~ AQA GCSE Physics Paper

Energy Paper 1

Think Pair Share

What is a system?

When a system changes the way energy is stored also changes.

OsinclairEducation

You need to be prepared to describe some energy changes.

Key Term	Definition	
System		

Energy Store	Description	Image
Magnetic		E
Internal		
Chemical		H H O O

Energy Store	Description	Image
Kinetic		
Gravitatio- nal Potential		
Elastic Potential		MAMAMAM

Energy Store	Description	Image
Nuclear		
Electrostatic		

CS/H

CS/F

(SS/F)

(SS/H)

Scenario:

An object projected upwards.

Energy Changes

Kinetic Energy

Gravitational Potential Energy

AQA GCSE Physics Paper

1.1.1 Energy Stores and Systems Scenario: A moving object hitting an obstacle **Energy Changes** ß **Kinetic Energy** Sound Waves and Thermal Energy SS/F CS/H SS/H @SinclairEducation

Physics Paper CS E 5 AQA

This depends on the context!

Scenario:

An object accelerated by a constant force.

Energy Changes

Gravitational Potential Energy

Scenario:

A vehicle slowing down.

Energy Changes

Kinetic Energy

Thermal Energy

@SinclairEducation

Scenario:

Bringing water to a boil in an electric kettle.

Energy Changes

Electric Current

Thermal Energy

1.1.2 Changes in Energy Think What is the equation that you would use to Pair calculate kinetic energy? Share **Kilograms** kg You may need to convert units! Kinetic Energy = 0.5 x Mass x Speed² $E_{k} = \frac{1}{2} \times m \times v^{2}$ Metres per second Joules J m/s

Key Term	Definition
Kinetic Energy	

aber

Physics

So So M

AQA GCSE Physics Paper

SS/F

CS/H

A spring that has a spring constant of 1.2N/m is stretched 22cm. Calculate its elastic potential energy.

Convert Units		Usually 1 mark for this.
Write down the formula.		Substitute before you do any rearranging. 1 mark for doing this.
Substitute Values		Show each step that you do.
Do the Maths		
Round and add units.		Answer to 2 s.f which is the same as the values in the qu.
	CS/	F CS/H SS/F SS/H

1.1.2 Changes in Energy A spring has 120J of energy and and has a spring constant of 9.2N/m. Calculate its extension. (4)		
Convert Units Write down the		Substitute before you do any rearranging. 1 mark for doing this
formula.		Show each step that
Substitute Values Do the Maths		you do. Do as much as the calculation that you can before rearranging.
Round and add units.		Answer to 2 s.f which is the same as the values in the qu.
(C) @SinclairEducation	CS/	F CS/H SS/F SS/H

CS/H

SinclairEducation

Think Pair Share

What is the equation that you would use to calculate gravitational potential energy?

Weight = Mass x Gravitational Field Strength

You could be given weight in N. To find GPE multiply this by height.

Key Term	Definition	
Gravitational Potential Energy	The energy stored in an object at a height.	

1.1.2 Changes in Energy A 350g book is lifted 2.8m when gravitational field strength is 9.8N/kg. Calculate the GPE.

Convert Units		Usually 1 mark for this.
Write down the formula.		Substitute before you do any rearranging. 1 mark for doing this.
Substitute Values		Show each step that you do.
Do the Maths		
Round and add units.		Answer to 2 s.f which is the same as the values in the qu.
	CS	E CS/H SS/E SS/H

clairEducation

Calculate mass when a block is raised 7.21m and have

1.10kJ of GPE. Gravitational field strength is 9.8N/kg(5)

Convert Units	 Usually 1 mark for this.
Write down the formula.	Substitute before you do any rearranging. 1
Substitute Values	mark for doing this.
Do the Maths	Show each step that you do.
	Answer to 3 s.f which
Round and add units.	is the same as the values in the qu.

SS/F

SS/H

CS/H

CS/

@SinclairEducation

Figure 1 shows a person sliding down a zip wire.

Figure 1

(a) As the person slides down the zip wire, the change in the gravitational potential energy of the person is 1.47 kJ 1470J

The mass of the person is 60 kg

@SinclairEducatio

gravitational field strength = 9.8 N/kg

Calculate the change in vertical height of the person.

E_p = m x g x h 1470 = 60 x 9.8 x h 1470 = 588 x h h = 1470/588

2.5 m

The speed of the rocket just after being launched is 12 m / s. The mass of the rocket is 0.05 kg.

(i) Calculate the kinetic energy of the rocket just after being launched.

 $E_{k} = \frac{1}{2} \times m \times v^{2}$

 $E_k = \frac{1}{2} \times 0.05 \times 12^2$

```
Kinetic energy = _____ 3.6 J
```

(ii) As the rocket moves upwards, it gains gravitational potential energy.

State the maximum gravitational potential energy gained by the rocket.

Ignore the effect of air resistance.

Maximum gravitational potential energy = _____

(2)

(iii) Calculate the maximum height the rocket will reach.

Ignore the effect of air resistance.

Gravitational field strength = 10 N/kg.

 $E_p = m x g x h$

3.6 = 0.05 x 10 x h

h = 3.6 / 0.5

AQA GCSE Physics Paper

Maximum height = _____ m

Think Pair

What is specific heat capacity?

Share

Key Term	Definition
Specific Heat Capacity	

@SinclairEducation

1.1.3 Energy Changes in Systems Think What is specific heat capacity? Pair Share Joules per kilogram per degree Celsius Kilograms J/kg°C kg **Change in Thermal Energy = Mass x SHC x Temp Change** $\Delta E = m x c x \Delta \theta$ Degrees Celsius °C Joules J **Key Term** Definition The amount of energy required to raise the **Specific Heat** temperature of one kilogram of the substance Capacity by one degree Celsius.

@SinclairEducation

1.1.3 Energy Changes in Systems Calculate the energy needed to increase the temperature of a 200g gold block by 10°C. Its SHC is 129J/kg°C. (4)

1.1.3 Energy Changes in Systems Calculate the specific heat capacity of a 0.85kg block of iron that increases in temperature by 25°C with 9.56kJ

Convert Units		Usually 1 mark for this.
Write down the formula.		Substitute before you do any rearranging. 1
Substitute Values		mark for doing this.
Do the Maths		Show each step that you do.
Round and add units.		Answer to 2 s.f which is the same as the values in the qu.
() @SinclairEducation	CS	/F) CS/H) SS/F) SS/H)

A metalworker quenches a steel rod by heating it to a temperature of 900 °C before placing it in cold water. The mass of the steel rod is 20 kg.

The final temperature of the rod and water is 50 °C.

Calculate the energy transferred from the steel rod to the water.

Specific heat capacity of steel = 420 J/kg °C.

Change in temperature: 850°C

 $\Delta \mathbf{E} = \mathbf{m} \mathbf{x} \mathbf{c} \mathbf{x} \Delta \mathbf{\theta}$

AQA GCSE Physics Paper

⊿E = 20 x 420 x 850

Energy transferred = **7,140,000**

Think Pair Share How can you use apparatus to determine the specific heat capacity of a material?

Think Pair Share

1

CSE Physics Pa

How can you use apparatus to determine the specific heat capacity of a material?

To construct your own method to determine the specific heat capacity of a material use the following structure.

Complete the graph of the data from the table above on the graph below.

- Choose a suitable scale for the x-axis.
- Label the x-axis.
- Plot the student's results.
- Draw a line of best fit.

Time in s	Temperature in °C
0	20.0
60	24.5
120	29.0
180	31.0
240	31.5

@SinclairEducation

ര

1.1.4 Power

O@SinclairEducation

1.1.4 Power Think What is power? Pair Share

Energy Transferred = Work Done

So...

Key Term	Definition
Power	The rate at which energy is transferred or the rate at which work is done.

AQA GCSE Physics Paper

AQA GCSE Physics Paper

@SinclairEducation

1.1.4 Power

Think Pair

What is power?

Share

Power = Work Done / Time Power = Energy Transferred / Time

An energy transfer of 1 joule per second is equal to a power of 1 watt!

Key Term	Definition
Power	The rate at which energy is transferred or the rate at which work is done.

1.1.4 Power The electrical generators can provide 1.5 x 10⁹W of power for a maximum of 5 hours. Calculate the energy transferred. (3)

ransterred. (3)	Usually 1 mark for this.
Convert Units	Substitute before vou
Write down the formula.	do any rearranging. 1 mark for doing this.
Substitute Values	Show each step that
Do the Maths	you do.
	Answer to 2 s.f which
Round and add units.	is the same as the values in the qu.

SS/F

SS/H

CS/H

CS

@SinclairEducation

1.2.	1 Energy	/ Tran	nsfers in a Syst	em
Think Pair What is the law of the conservation of energy? Share				
		This mea energy t that the	ans that when ever there are transfers in a closed system, ere is no net change to the total energy.	
En	ergy In = Ener	gy Out		
	Key Term		Definition	
L Cor	aw of the servation of Energy			
			CS/F CS/H SS/F	SS/H

-

@SinclairEducation

O @SinclairEducation

Think Pair Share

How can we reduce unwanted energy transfers?

Think Pair

How can we reduce unwanted energy transfers?

Share

Thermal insulation

Examples in the home include loft insulation, carpets and cavity wall insulation.

The insulation reduces the transfer of energy.

Some materials are good conductors of heat.

They have a high thermal conductivity.

The higher a materials thermal conductivity, the higher the rate of energy transfer by conduction.

SinclairEducation

Think Pair Share

How can we test the effectiveness of materials as insulators?

Boil water in a kettle and add <u>80cm³</u> of this water to a 100cm³ beaker.

Control Variable

Think Pair Share

How can we test the effectiveness of materials as insulators?

2

Place this beaker into a larger beaker with a lid Place a thermometer through the lid.

Think Pair Share

How can we test the effectiveness of materials as insulators?

Record the start temperature. 4 Start the timer and record the temperature at 5, 10, 15 and 20 minutes.

Think Pair Share

How can we test the effectiveness of materials as insulators?

Repeat steps 1-4 with different materials placed in the gap between the smaller and larger beaker.

Think Pair Share

How can we test the effectiveness of materials as insulators?

6

Plot a cooling curve of temperature against time. Temperature (°C)

Time (min)

Think Pair Share

How can we investigate factors that affect the insulation properties of materials?

1

Boil water in a kettle and add 200cm³ of this water to a 250cm³ beaker.

Think Pair Share

How can we investigate factors that affect the insulation properties of materials?

②SinclairEducation

Place a thermometer through a cardboard lid. Record the start temperature.

AQA GCSE Physics Paper

Think Pair Share

How can we investigate factors that affect the insulation properties of materials?

4

Start the timer and record the temperature at 5, 10, 15 and 20 minutes.

Think Pair Share

How can we investigate factors that affect the insulation properties of materials?

5

Repeat steps **1-4** with different number of layers of insulation held in place with elastic bands.

Think Pair Share

How can we investigate factors that affect the insulation properties of materials?

6 Plot a cooling curve of temperature against time.

Temperature (°C)

Exam Practice

Digital thermometer

Datalogger

The datalogger records 10 readings every second.

The student considered using a temperature probe and datalogger.

Explain why it was **not** necessary to use a temperature probe and datalogger for this investigation.

Thermometer and datalogger have the same resolution Only need to measure start and end temperature

1.2.2 Efficiency

Think Pair Share

What is efficiency?

This could either be in watts or joules.

CS/H

CS/

SS/F

SS/H

Efficiency = Useful Output / Total Input

Key Term	Definition
Efficiency	

(C) @SinclairEducation

1.2.2 Efficiency

The total power input to the solar cell is 2.4 W when the efficiency is 0.20. Calculate the useful power output of the solar cell. (3)

Convert Units	
Write down the formula.	 Substitute before you do any rearranging. 1 mark for doing this.
Substitute Values	
Do the Maths	Anguarta 2 g fuubiab
Round and add units.	is the same as the values in the qu.

@SinclairEducation

Coal, oil and natural gas are all fossil fuels that have formed over millions of years from the remains of dead organisms.

Think Pair Share What are the advantages and disadvantages of these non renewable energy resources?

Energy Resource	Advantages	Disadvantages
Fossil Fuels		

Think Pair Share

What are the advantages and disadvantages of these non renewable energy resources?

Energy Resource	Advantages	Disadvantages
Nuclear Fuel		

Think Pair V

What are renewable energy resources?

Share

Key Term	Definition
Renewable Energy Resource	

Think

Pair What uses to we have for energy resources?

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages
Biofuel		

CS

SS/F

SS/H

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages
Wind		

We typically use this for:

Electricity Generation

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages
Hydro- electricity		

We typically use this for:

Electricity Generation

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages
Geothermal		

Think Pair Share

clairEducation

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages	
Tidal			
	We typically u	use this for:	
	Electricity Ger	Electricity Generation	
		CS/F CS/H SS/F SS/H	

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages		Disadvantages
Solar			
We typically use this for:		Electri	icity Generation

Heating

SS/F

SS

CS/H

CS/

@SinclairEducation

Think Pair Share

What are the advantages and disadvantages of these renewable energy resources?

Energy Resource	Advantages	Disadvantages
Water Waves		

We typically use this for:

SS/F

CS/H

Electricity Generation

Think Pair Share

Why are some energy resources more reliable than others?

Reliable

Unreliable

Solar and wind are unpredictable and so are less reliable than other energy resources.

7 QA GCSE Physics Pap
1.3 Energy Resources

Think Pair Share

vsics

CSE ESE

Ö

AC

Why are some energy resources more reliable than others?

Reliable

These resources are always available to be used. This makes them very reliable.

Unreliable

Solar and wind are unpredictable and so are less reliable than other energy resources.

CS/H

SS/F