<u>C2 – Chemical bonds</u>

Why is NaCl a solid at room temperature, but oxygen is a gas?	What could you do to solid magnesium chloride	Explain why the boiling point increases as you go down
NaCl = ionic, high MP due to strong electrostatic forces of attraction O ₂ = small covalent, low MP due to weak intermolecular forces	to make it conduct electricity? Melt it or dissolve it (so ions are free to move)	group 7. The diatomic molecules get bigger, so there are stronger intermolecular forces which require more energy to break.
Titanium chloride is a liquid at room temperature. Explain why	Explain why metals conduct electricity.	Why is steel stronger than pure iron?
chloride to be a liquid at room temperature.	Metals are giant ionic lattices that are made up of positive metal	Steel is an alloy made up of different types of atoms . As
Titanium chloride is ionic . Ionic compounds are usually solid at room temperature because they have strong electrostatic forces	ions surrounded by delocalised electrons, so electrons are able to move through the	the atoms are different sizes , the layers are distorted and atoms are not able to slide over each other .
between ions , so they have high	metal.	
IVIP.		

C2 - Bonding, structure and the properties of matter

To be stable, all atoms want **a full outer shell.**

Atoms in **group 8/0** (like Neon) already have a full outer shell and therefore are **unreactive**.

All other atoms in the periodic table are **unstable**, so they want to achieve a full outer shell.

To do this, they bond with other atoms by transferring or sharing electrons!

Ionic bonding	Occurs between metals and non-metals	5
Covalent bonding	Occurs between non-metals atoms	
Metallic bonding	Occurs between metal atoms	

		Types of bonding	
	Ionic bonding	Covalent bonding	Metallic bonding
What atoms does this occur between?	Between metals and non metals	Between non- metals and non- metals	Between metal atoms
How are the electrons involved in bonding?	Electrons are transferred between atoms	Electrons are shared between atoms	Electrons are delocalised around atoms
What do these structures look like?	Giant lattices made up of positive and negative ions (attracted by electrostatic forces)	Can occur in small covalent molecules or giant covalent structures	Giant structures which can be elements (one type of metal) or alloys (mixture of metals)
Examples:	Sodium chloride Magnesium oxide	Carbon dioxide Water	Copper Steel

IONIC BONDING – TRANSFER

Ion = a particle that has a positive or negative charge due to the loss or gain of electrons.

Every atom in the same group will form an **ion** with the same charge:

+1	+2	LEARN THIS!!										+3		-3	-2	-1	2
Н																	He
Hydrogen 1																	Helium 4
2	3 D o					2	← Protor	number				5	6	7	8	9	10
LI	ве					не	← Symbo ← Name	of element				в	C	N	0	r	Ne
3	9					4	← Relati	ve atomic m	ass			Boron 11	12	Nitrogen 14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	H
Sodium 23	Magnesium 24											Aluminum 27	Silicon 28	Phosphorus 31	Sulfur 32	Chlorine 35.5	Argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39	Calcium 40	Scandium 45	Titanium 48	Vanadium 51	Chromium 52	Manganese 55	Iron 56	Cobalt 59	Nickel 59	Copper 64	Zinc 65	Gallium 70	Germanium 73	Arsenic 75	Selenium 79	Bromine 80	Krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	48	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Nb	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 86	Strontium 88	Yttrium 89	Zirconium 91	Niobium 93	Niobium 96	Technetium 98	Ruthenium 101	Rhodium 103	Palladium 106	Silver 108	Cadmium 112	Indium 115	Tin 119	Antimony 122	Tellurium 128	Iodine 127	Xenon 131
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Ро	At	Rn
Cesium 133	Barium 137	Lanthanum 139	Hafnium 179	Tantalum 181	Tungsten 184	Rhenium 186	Osmium 190	Iridium 192	Platinum 195	Gold 197	Mercury 201	Thallium 204	Lead 207	Bismuth 209	Polonium 210	Astatine 210	Radon 222
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									
Francium 223	Radium 226	Actinium 227	Unilquation 257	Conilpentium 260	Unnilhesium 263	Unnilseptium 262	Unniloctium 265	Unniennium 266									

Task: Draw the dot and cross diagrams for:

- 1. Li + Cl
- 2. K + F
- 3. Mg + O

Challenge:

- 4. Mg + Cl
- 5. Na + O

You only need to draw the outer shell of electrons!

c) Mg + O

Challenge: -1 a) Mg + Cl ** ×× CI +2 ž CI ** × Mg ×× ×× Mg * * * * CI b) Na + O Cl ××× ××

××

Task: Predict the formula of each of the following compounds:

- 1. Na + N Na₃N (sodium nitr<u>ide</u>)
- 2. Ca + S CaS (calcium sulphide)
- 3. Al + Cl $AlCl_3$ (aluminium chlor<u>ide</u>)
- 4. Mg + N Mg_3N_2 (magnesium nitride)
- 5. Al + O Al_2O_3 (aluminium ox<u>ide</u>)

Challenge – Name the compounds! Remember:

1. The name of the metal comes first, the name of the non-metal comes second.

2. The ending of the non-metal changes to 'ide'.

Empirical formula = a chemical formula showing the simplest ratio of elements in a compound.

e.g. Sodium chloride has the empirical formula NaCl, which is one Na⁺ ion and one Cl⁻ ion.

So, if you had 10 Na⁺ ions and 10 Cl⁻ ions, the empirical formula would still be NaCl – this is the simplest ratio.

Challenge: What would the empirical formula if you had 10 Mg²⁺ ions and 20 Cl⁻ ions?

Empirical formula

Sodium only has one electron to lose, but oxygen needs to gain two electrons. Two sodium atoms are needed to bond with one oxygen atom.

 a. 2D electron transfer diagram of sodium oxide

Empirical formula = ? Na₂O

Manganese oxide is an ionic compound.

Figure 3

Determine the empirical formula of manganese oxide.

Empirical formula = ? MnO

2D structure

Shows how the bonds are formed. Shows the **ratio** of atoms. Shows the arrangement of the atoms in space.

Not to scale. Does not show the shape of the molecules.

Not to scale. Does not show information about forces between atoms. Easiest to draw. Shows the arrangement of atoms in one layer.

Not to scale.

Does not show how atoms in other layers are arranged.

Equations of ion formation (HT ONLY)

Ionic equations can be used to show whether atoms LOSE or GAIN electrons:

- Na \rightarrow Na⁺ + e⁻ This shows that sodium has **lost** an electron to become **positive**
- $CI + e^{-} \rightarrow CI^{-}$ This shows that chlorine has **gained** an electron to become **negative**.

Task: Write the equations for the ion formation in NaBr:

Na \rightarrow Na⁺ + e⁻ Br + e⁻ \rightarrow Br⁻ The charges balance each other out to form NaBr

 $N \equiv N$

METALLIC BONDING

DELOCALISED electrons

Metallic bonding occurs due to strong electrostatic forces of attraction between the positive metal nuclei and the negatively charged delocalised electrons.

Delocalised electrons

Positive metal nucleus

'Sea' of delocalised electrons

Positive metal nucleus

Why is NaCl a solid at room temperature, but oxygen is a gas?	What could you do to solid magnesium chloride to make it conduct electricity?	Explain why the boiling point increases as you go down group 7.
Titanium chloride is a liquid at room temperature. Explain why you would not expect titanium chloride to be a liquid at room temperature.	Explain why metals conduct electricity.	Why is steel stronger than pure iron?

To be stable, all atoms want **a full outer shell.**

Atoms in **group 8/0** (like Neon) already have a full outer shell and therefore are **unreactive**.

All other atoms in the periodic table are **unstable**, so they want to achieve a full outer shell.

To do this, they bond with other atoms by transferring or sharing electrons!

Ionic bonding	Occurs between metals and non-metals	5
Covalent bonding	Occurs between non-metals atoms	
Metallic bonding	Occurs between metal atoms	

		Types of bonding	
	Ionic bonding	Covalent bonding	Metallic bonding
What atoms does this occur between?	Between metals and non metals	Between non- metals and non- metals	Between metal atoms
How are the electrons involved in bonding?	Electrons are transferred between atoms	Electrons are shared between atoms	Electrons are delocalised around atoms
What do these structures look like?	Giant lattices made up of positive and negative ions (attracted by electrostatic forces)	Can occur in small covalent molecules or giant covalent structures	Giant structures which can be elements (one type of metal) or alloys (mixture of metals)
Examples:	Sodium chloride Magnesium oxide	Carbon dioxide Water	Copper Steel

IONIC BONDING – TRANSFER

Ion = a particle that has a positive or negative charge due to the loss or gain of electrons.

Every atom in the same group will form an **ion** with the same charge:

+1	+2	LEARN THIS!!										+3		-3	-2	-1	2
Н																	He
Hydrogen 1																	Helium 4
2	3 D o					2	← Protor	number				5	6	7	8	9	10
LI	ве					не	← Symbo ← Name	of element				в	C	N	0	r	Ne
3	9					4	← Relati	ve atomic m	ass			Boron 11	12	Nitrogen 14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	H
Sodium 23	Magnesium 24											Aluminum 27	Silicon 28	Phosphorus 31	Sulfur 32	Chlorine 35.5	Argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39	Calcium 40	Scandium 45	Titanium 48	Vanadium 51	Chromium 52	Manganese 55	Iron 56	Cobalt 59	Nickel 59	Copper 64	Zinc 65	Gallium 70	Germanium 73	Arsenic 75	Selenium 79	Bromine 80	Krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	48	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Nb	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 86	Strontium 88	Yttrium 89	Zirconium 91	Niobium 93	Niobium 96	Technetium 98	Ruthenium 101	Rhodium 103	Palladium 106	Silver 108	Cadmium 112	Indium 115	Tin 119	Antimony 122	Tellurium 128	Iodine 127	Xenon 131
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Ро	At	Rn
Cesium 133	Barium 137	Lanthanum 139	Hafnium 179	Tantalum 181	Tungsten 184	Rhenium 186	Osmium 190	Iridium 192	Platinum 195	Gold 197	Mercury 201	Thallium 204	Lead 207	Bismuth 209	Polonium 210	Astatine 210	Radon 222
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									
Francium 223	Radium 226	Actinium 227	Unilquation 257	Conilpentium 260	Unnilhesium 263	Unnilseptium 262	Unniloctium 265	Unniennium 266									

Task: Draw the dot and cross diagrams for:

- 1. Li + Cl
- 2. K + F
- 3. Mg + O

Challenge:

- 4. Mg + Cl
- 5. Na + O

You only need to draw the outer shell of electrons!

b) K + F

c) Mg + O

a) Mg + Cl

b) Na + O

Task: Predict the formula of each of the following compounds:

- 1. Na + N
- 2. Ca + S
- 3. Al + Cl
- 4. Mg + N
- 5. Al + O

Challenge – Name the compounds! Remember:

1. The name of the metal comes first, the name of the non-metal comes second.

2. The ending of the non-metal changes to 'ide'.

Empirical formula =

a chemical formula showing the simplest ratio of elements in a compound.

e.g. Sodium chloride has the empirical formula NaCl, which is one Na⁺ ion and one Cl⁻ ion.

So, if you had 10 Na⁺ ions and 10 Cl⁻ ions, the empirical formula would still be NaCl – this is the simplest ratio.

Challenge: What would the empirical formula if you had 10 Mg²⁺ ions and 20 Cl⁻ ions?

Empirical formula

Sodium only has one electron to lose, but oxygen needs to gain two electrons. Two sodium atoms are needed to bond with one oxygen atom.

 a. 2D electron transfer diagram of sodium oxide

Empirical formula =

Manganese oxide is an ionic compound.

Figure 3

Determine the empirical formula of manganese oxide.

Empirical formula =

2D structure

Shows how the bonds are formed. Shows the **ratio** of atoms. Shows the arrangement of the atoms in space.

Not to scale. Does not show the shape of the molecules.

Not to scale. Does not show information about forces between atoms. Easiest to draw. Shows the arrangement of atoms in one layer.

Not to scale.

Does not show how atoms in other layers are arranged.

Equations of ion formation (HT ONLY)

Ionic equations can be used to show whether atoms LOSE or GAIN electrons:

- Na \rightarrow Na⁺ + e⁻ This shows that sodium has **lost** an electron to become **positive**
- $CI + e^{-} \rightarrow CI^{-}$ This shows that chlorine has **gained** an electron to become **negative**.

Task: Write the equations for the ion formation in NaBr:

 $N \equiv N$

METALLIC BONDING

DELOCALISED electrons

Metallic bonding occurs due to strong electrostatic forces of attraction between the positive metal nuclei and the negatively charged delocalised electrons.

Delocalised electrons

Positive metal nucleus

'Sea' of delocalised electrons

Positive metal nucleus

Title – C2 – Properties of substances

Monday, 25 September

	State two properties of metals.	W g	/hy did Mendeleev leave aps in his periodic table?		Describe and explain the reactivity of noble gases.		
	Shiny, hard, malleable, ductile, high melting point, good conductors.		For undiscovered elements (that were later discovered)		They are unreactive, because they have a full outer shell of electrons.		
What would the charge be			scribe the reactivity as yo	bu	Complete the word equation and		
	on a sodium ion? Explain	go down group 1 metals.			explain why the reaction has take		
	why.				place:		
					sodium bromide + chlorine ->		
	Na +1, because sodium would lose one electron.		Alkali metals get more reactive as you go down the group.		sodium bromide + chlorine -> sodium chloride + bromine Chlorine is more reactive so has		
					displaced bromine.		

One electron is transferred from sodium to chlorine. This forms a positive sodium ion and a negative chloride ion.

C2 - Bonding, structure and the properties of matter

- 1. Complete the diagram below to show particle diagrams for each state of matter and the name of each process happening at A, B, C and D.
- 2. Describe what happens to the particles in terms of energy and movement when a solid turns into a liquid.
- In a **solid**, particles can only **vibrate** and are held in **fixed positions**.
- When heated, the particles gain **thermal energy**.
- The thermal energy is converted to kinetic energy, so particles move faster.
- Particles eventually gain enough energy to break free from their fixed positions. They start to move past each other and become a liquid.

LET'S RECAP ...

When a substance melts, the particles gain kinetic energy and they break free from the regular arrangement of atoms (solid) and move further apart (liquid):

The stronger the forces the higher the melting point and boiling point.

broken.

Challenge: Explain why gold is a solid at room temperature, but water is a liquid. Hint: Think about the melting points of both substances.
Extra challenge: Explain why gold is a solid at room temperature, but water is a liquid. Hint: Think about the melting points of both substances.

- Gold has **strong** intermolecular forces, so it has a **high** melting point (1064°C).
- The melting point is **much higher** than room temperature (~25°C).
- At room temperature, there is **not enough thermal energy** to melt the gold by breaking the strong intermolecular forces.
- Water has **weak** intermolecular forces, so it has a **low** melting point (0°C).
- The melting point is **lower than** room temperature (~25°C).
- At room temperature, there **is enough thermal energy** to melt ice by breaking the strong intermolecular forces.
- Solid ice turns into liquid water.

These are known as '*state symbols*'. They are only used in symbol equations, not word equations!

The only substance that will ever be a pure liquid is water!

All acids and alkalis will **always** be aqueous e.g. HCl (aq)

A student investigated the reaction of copper carbonate with dilute sulfuric acid.

The student used the apparatus shown in the figure below. Copper carbonate Dilute sulfuric acid Balance

 $CuCO_3((s)) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(()) + CO_2(g)$

Challenge – Why did the mass of the balance decrease?

There are *three types of bonding* that occurs between atoms in compounds.

The type of bonding depends on what atoms are involved...

Ionic bonding Occurs between **metals** and **non-metals**

Covalent bonding Occurs between **non-metals** atoms

Metallic bonding Occurs between **metal** atoms

HIGHEST MELTING POINT

-218.8 °C	0°C	660.3 °C	801 °C	1,064 °C
-----------	------------	----------	--------	----------

What atoms are in each of these substances?

O ₂	H ₂ O	AI	NaCl	Au
2 oxygen atoms	2 hydrogen atoms and 1 oxygen atom	1 aluminium atom	1 sodium atom and 1 chlorine atom	1 gold atom

So, what type of bonding occurs in these substances?

Covalent	Covalent	Metallic	Ionic (metal	Metallic
(non-metals)	(non-metals)	(metals)	and non metal)	(metals)

<u>Word:</u>

Property (tier 2)

Define it:

A quality or characteristic of an object.

Digging Deeper:

In science, a 'property' of a material refers to the whole object, not the individual atoms!

Link it (similar words):

Quality, attribute, feature, trait, mark, hallmark

Deconstruct it (Root word):

The word **property** is derived from an Anglo-Norman French variant of the Latin proprietas, meaning 'one's own, particular'.

<u>Use it:</u>

The properties of a solid are that they are rigid, have a fixed shape and a fixed volume. Write a sentence of your own that uses the word **property.**

Write your own definition of the word **property.**

Which subjects or topics will this word be relevant to?

Ionic compounds

Key definition: Ionic compounds are **GIANT IONIC LATTICES** made up of millions of **POSITIVE AND NEGATIVE IONS.** These oppositely charged ions are joined by **STRONG ELECTROSTATIC FORCES OF ATTRACTION** (ionic bonds).

<u>Word:</u> Electrostatic (tier 3)

<u>Define it:</u>

Relating to positive or negative electric charges (on ions).

Digging Deeper:

Ionic bonds are formed through electrostatic attraction between positive and negative ions.

Deconstruct it (Root word):

From '**electro-'** meaning *relating to electricity* and '**static'** meaning *not moving*. <u>Link it (similar</u> words):

Charged, positive, negative

<u>Use it</u>

Ionic bonds are very strong due to strong electrostatic forces of attraction. Write a sentence of your own that uses the word electrostatic.

Write your own definition of the word electrostatic.

Which subjects or topics will this word be relevant to?

Physical Properties of Ionic Compounds

1. Solid at room temperature, so they have **high melting points and boiling points.**

Strong electrostatic forces of attraction between oppositely charged ions (ionic bonding)

Physical Properties of Ionic Compounds

2. Conduct electricity when molten or dissolved (NOT WHEN SOLID)

Х

Why?

Properties of simple covalent compounds

1. Gases at room temperature, so they have **low melting points and boiling points.**

Weak intermolecular forces between molecules, do not require a lot of energy to break (NOT weak covalent bonds!)

Can water compounds conduct electricity?

No free moving charged particles.

Free moving ions, which can carry electrical charge.

Properties of simple covalent compounds

2. Cannot conduct electricity

No free moving ions to carry electrical charge.

Metallic structures

Key definition: Metallic bonding occurs due to strong electrostatic forces of attraction between the positive metal nuclei and the negatively charged delocalised electrons.

Delocalised electrons

Positive metal nucleus

Positive metal nucleus

<u>Word:</u> Delocalised (tier 3)

Define it:

When an electric charge is spread among several atoms that are bonded together.

Digging Deeper:

Local means 'relating or restricted to a particular area'. In everyday life, <u>de</u>localise means to detach or remove something from it's particular location (the opposite of local!). In metals, this means that the electrons that are usually attached to one atom, can move between all of the atoms.

<u>Link it (similar</u> <u>words):</u>

Shared, spread, between

<u>Use it</u> Delocalised electrons are able to move in between atoms in metals. Write a sentence of your own that uses the word **delocalised.**

Write your own definition of the word **delocalised.**

Which subjects or topics will this word be relevant to?

1. They are **good** conductors of heat and electricity

ХНМ

Delocalised electrons allow the heat energy/ electrical charge to be transferred through the structure.

$$\begin{array}{c} \overset{\delta^{+}}{\longrightarrow} \overset{\delta^{+}}{\otimes} \overset{\delta^{+}}{\otimes}$$

3. They have high melting points and boiling points

Strong electrostatic forces of attraction between positive nuclei and delocalised electrons

4. They are *malleable* and *ductile*

Can be easily hammered into shape without breaking

Gold is a very malleable metal!

Can be drawn out into wires

Copper is a very ductile metal!

4. They are malleable and ductile

Metals consist of **layers of atoms** that can **slide over one another** when the metal is bent, hammered or pressed.

<u>Word:</u> Alloy (tier 3)

Define it:

Mixtures of metals that have been designed to make **useful materials**.

Digging Deeper:

In the automotive industry, alloy wheels are wheels that are made from an alloy of aluminium or magnesium.

<u>Link it (similar</u> words):

Mixture, blend, combination

Write a sentence of your own that uses the word **alloy.**

Write your own definition of the word **alloy.**

Which subjects or topics will this word be relevant to?

Deconstruct it (Root word):

From French word *'aloyer'* which means '*combine'*.

<u>Use it</u>

Steel is an alloy of carbon and iron, which makes the metal very hard.

Alloys are usually **stronger** than pure metals.

Pure metal:

Atoms all the same size in a regular arrangement, so atoms can easily slide over each other.

Alloys:

Different sized atoms disrupts the rows and means that the atoms **can not slide easily over each** other making it stronger.

Polymers

In polymerisation reactions many small molecules called **monomers** join together to form a very large molecules called **polymers**.

Polymers are giant covalent compounds made up of HYDROCARBONS (formed from hydrogen and carbon atoms only).

The covalent bonds are very **strong**, so polymers have very **high melting points**.

The diagram below shows part of the structure of sodium chloride (NaCl).

(d) What holds the particles together in sodium chloride?

Use the diagram above.

Tick (√) one box.

Electrostatic attractions

Intermolecular forces

Metallic bonds

(e) Solid sodium chloride does not conduct electricity.

Give two ways in which sodium chloride can be made to conduct electricity.

1._____

2.

Sodium chloride

Exam practice (foundation)

(f) Figure 3 shows the relative sizes of an oxygen molecule and a sulfur molecule.

An electric current is passed through copper.

Figure 5 shows the apparatus used.

Exam practice (foundation)

(f) Complete the sentence.

Choose the answer from the box.

gas liquid solid solution

Figure 5 shows that copper conducts electricity as a _____

(g) Complete the sentence.

Choose the answer from the box.

atoms	electrons	ions	molecules
-------	-----------	------	-----------

Copper conducts electricity because of the movement of delocalised _____

(1)

Give two physical properties of metals.

1.			
2.			

Exam practice (foundation)

(2)

(1)

Complete the sentence.

Choose the answer from the box.

Use Figure 2 to explain why the alloy is harder than pure zinc.

Potassium fluoride is an ionic compound.

Explain why ionic compounds have high melting points.

Use the following words in your answer:

- attraction
- energy
- ions.

Exam practice (foundation)

Poly(ethene) is produced from ethene in a polymerisation reaction. The equation for (ii) the reaction is:

Which **two** statements about the polymerisation reaction to form poly(ethene) are correct? Tick (**v**) two boxes.

	Tick (🖍)
A polymer is a small molecule.	
Many ethene molecules join together.	<
Poly(ethene) contains a double bond.	
The monomer is ethene.	✓

Figure 2 shows part of a large hydrocarbon molecule.

Figure 2

- (c) Which two elements are in all hydrocarbons?
 - 1. __ Carbon _____
 - 2. Hydrogen
- (d) Complete the sentence. Choose the answer from the box.

an atom	a metal	a polymer	a salt	
The large molecule r	epresented in Fig	gure 2 is	A polymer	

Exam practice (foundation)

(1)

(2)

TO PRINT

State two properties of metals.	Why did Mendeleev leave gaps in his periodic table?	Describe and explain the reactivity of noble gases.
What would the charge be on a sodium ion? Explain why.	Describe the reactivity as you go down group 1 metals.	Complete the word equation and explain why the reaction has taken place: sodium bromide + chlorine ->

Challenge – Describe the movement of electrons when sodium reacts with chlorine.

- 1. Complete the diagram below to show particle diagrams for each state of matter and the name of each process happening at A, B, C and D.
- 2. Describe what happens to the particles in terms of energy and movement when a solid turns into a liquid.

LET'S RECAP ...

When a substance melts, the particles gain kinetic energy and they break free from the regular arrangement of atoms (solid) and move further apart (liquid):

The stronger the forces the higher the melting point and boiling point.

broken.

Challenge: Explain why gold is a solid at room temperature, but water is a liquid.

These are known as '*state symbols*'. They are only used in symbol equations, not word equations!

Challenge – Why did the mass of the balance decrease?

There are *three types of bonding* that occurs between atoms in compounds.

The type of bonding depends on what atoms are involved...

Ionic bonding Occurs between **metals** and **non-metals**

Covalent bonding Occurs between **non-metals** atoms

Metallic bonding Occurs between **metal** atoms

Remember: METALS are on the LEFT of the periodic table, NON-METALS are on the RIGHT of the periodic table

HIGHEST MELTING POINT

What atoms are in each of these substances?

So, what type of bonding occurs in these substances?

Ionic compounds

Key definition: Ionic compounds are **GIANT IONIC LATTICES** made up of millions of **POSITIVE AND NEGATIVE IONS.** These oppositely charged ions are joined by **STRONG ELECTROSTATIC FORCES OF ATTRACTION** (ionic bonds).

Physical Properties of Ionic Compounds

Physical Properties of Ionic Compounds

Properties of simple covalent compounds

Properties of simple covalent compounds

Metallic structures

Key definition: Metallic bonding occurs due to strong electrostatic forces of attraction between the positive metal nuclei and the negatively charged delocalised electrons.

Delocalised electrons

Positive metal nucleus

Positive metal nucleus

Properties of metals

Properties of metals

Properties of metals

3. They are malleable and ductile

Alloys are usually **stronger** than pure metals.

Polymers

In polymerisation reactions many small molecules called **monomers** join together to form a very large molecules called **polymers**.

Polymers are giant covalent compounds made up of HYDROCARBONS (formed from only).

The covalent bonds are very **strong**, so polymers have very

The diagram below shows part of the structure of sodium chloride (NaCl).

(d) What holds the particles together in sodium chloride?

Use the diagram above.

Tick (√) one box.

Electrostatic attractions

Intermolecular forces

Metallic bonds

(e) Solid sodium chloride does not conduct electricity.

Give two ways in which sodium chloride can be made to conduct electricity.

1._____

2.

Sodium chloride

Exam practice (foundation)

(f) Figure 3 shows the relative sizes of an oxygen molecule and a sulfur molecule.

An electric current is passed through copper.

Figure 5 shows the apparatus used.

Exam practice (foundation)

(f) Complete the sentence.

Choose the answer from the box.

gas liquid solid solution

Figure 5 shows that copper conducts electricity as a _____

(g) Complete the sentence.

Choose the answer from the box.

atoms	electrons	ions	molecules
-------	-----------	------	-----------

Copper conducts electricity because of the movement of delocalised _____

(1)

Give two physical properties of metals.

1.			
2.			

Exam practice (foundation)

(2)

(1)

Complete the sentence.

Choose the answer from the box.

Use Figure 2 to explain why the alloy is harder than pure zinc.

Potassium fluoride is an ionic compound.

Explain why ionic compounds have high melting points.

Use the following words in your answer:

- attraction
- energy
- ions.

Exam practice (foundation)

Poly(ethene) is produced from ethene in a polymerisation reaction. The equation for (ii) the reaction is:

Which two statements about the polymerisation reaction to form poly(ethene) are correct? Tick (**v**) **two** boxes.

	Tick (✔)
A polymer is a small molecule.	
Many ethene molecules join together.	
Poly(ethene) contains a double bond.	
The monomer is ethene.	

Figure 2 shows part of a large hydrocarbon molecule.

Figure 2

Exam practice (foundation)

(c) Which two elements are in all hydrocarbons?

(d) Complete the sentence. Choose the answer from the box.

an atom	a metal	a polymer	a salt

The large molecule represented in Figure 2 is _____

(2)

C2 – Giant covalent molecules

What type of bonding occurs in sodium chloride? Why	Explain why oxygen (O ₂) is a gas at room temperature.	Why are alloys stronger than pure metals?	
lonic, it is a metal and a non-metal.	Oxygen (covalent) has a low boiling point due to weak intermolecular forces	Different sized atoms means the layers are disrupted, so atoms can't slide over each other.	
Why do polymers have high melting points?	What is the mass number of aluminium?	How many of each atom are in the following compounds?	
The atoms are bonded with strong covalent bonds that need a lot of energy to break.	27 27 27 Al aluminium 13	$H_{2}SO_{4} = 2 H, 1 S, 4 O$ CaCO ₃ = 1 Ca, 1 A, 3 O 2 CaOH = 2 Ca, 2 O, 2 H 3 MgCl ₂ = 3Mg, 6 Cl	

Independent = concentration of acid Dependent = temperature change Control variables = VOLUME of acid, VOLUME of alkali, concentration of alkali, starting temperature

C2 - Bonding, structure and the properties of matter

Examples of giant covalent structures

You need to be able to **describe** and **explain** the **properties** of four types of giant covalent compounds...

Diamond
 Graphite
 Graphene
 Fullerenes

These are all made from CARBON, so all contain STRONG COVALENT BONDS that require a LOT OF ENERGY TO BREAK

Diamond	Graphite	Graphene	Fullerenes
Bonding & Structure	Bonding & Structure	Bonding & Structure	Bonding & Structure
Properties	Properties	Properties	Properties
Uses	Uses	Uses	Uses

Diamond	Graphite	Graphene	Nanotubes/fullerenes
Bonding & Structure	Bonding & Structure	Bonding & Structure	Bonding & Structure
 Each carbon bonded to 4 other carbon atoms No delocalised electrons. 	 Each carbon bonded with 3 other carbon atoms Delocalised electrons that can carry charge. Arranged in layers with weak forces between layers. 	 Each carbon bonded to 3 other carbon atoms. Delocalised electrons that can carry charge. Only one layer thick. 	 Each carbon bonded to 3 other carbon atoms. Delocalised electrons that can carry charge. Arranged in tubes/spheres.
Properties	Properties	Properties	Properties
 High melting point and boiling point Does not conduct electricity Hard Transparent Shiny 	 High melting point and boiling point Conducts electricity (due to delocalised electrons) Soft and slippery because layers can slide over each other 	 High melting point and boiling point Conducts electricity (due to delocalised electrons) Transparent and lightweight 	 High melting point and boiling point Conducts electricity (due to delocalised electrons) Large surface area to volume ratio
Uses	Uses	Uses	Uses
- Drill bits - Jewellery	 Pencils Electrodes Lubricants 	 Solar cells and batteries Electronics 	 Tennis rackets Transporting drugs around the body

The diagrams show the structures of diamond and graphite.

- (a) Use the diagrams above and your knowledge of structure and bonding to explain why:
 - graphite is very soft

(a)

(ii) diamond is very hard

(iii) graphite conducts electricity.

Challenge: Both diamond and graphite have high melting points, but diamond's thermal conductivity is 10x higher than that of graphite. Suggest why.

(2) (Total 7 marks)

(1)

(2)

(2)

The diagrams show the structures of diamond and graphite.

Graphite and diamond are different forms of the element carbon. Graphite and diamond have different properties.

The structures of graphite and diamond are shown below.

(a) Graphite is softer than diamond.

Explain why.

(b) Graphite conducts electricity, but diamond does not. Explain why. (3

Graphite

(4

