Quantitative chemistry (C3)

Monday, 25 September 2023

1. How is the periodic table arranged? Do it now:
2. Why did Mendeleev leave gaps in his periodic table?
3. State the number of protons, neutrons and electrons in a sodium atom.

23

4. Draw the electronic configuration of sodium.
5. What does the mass number of an atom tell you?
6. What is an isotope?
7. State how many atoms of each element are in $\mathrm{Ca}(\mathrm{OH})_{2}$?

Maths challenge!
The diameter of an atom ranges from about 0.1 to 0.5 nanometres. Convert 0.1 nanometres into millimetres.

Quantitative chemistry (C3)
 Monday, 25 September 2023

1. How is the periodic table arranged?

Elements are arranged by increasing atomic (proton) number (NOT MASS NUMBER!)
2. Why did Mendeleev leave gaps in his periodic table?

For undiscovered elements (that were later discovered)
3. State the number of protons, neutrons and electrons in a sodium atom.

Protons $=11$, electrons $=11$, neutrons $=23-11=12$
4. Draw the electronic configuration of sodium.
5. What does the mass number of an atom tell you?

The number of protons + the number of neutrons

6. What is an isotope?

Isotopes contain the same number of protons but a different number of neutrons.
7. State how many atoms of each element are in $\mathrm{Ca}(\mathrm{OH})_{2}$?

1 calcium atom, 2 oxygen atoms and 2 hydrogen atoms.

Quantitative chemistry (C3)

Monday, 25 September 2023

Maths challenge!

Convert 0.1 nanometres into millimetres.

$$
0.1 \text { nm = } 0.1 / 1,000,000 \mathrm{~mm}
$$

$=0.0000001$ or $1 \times 10^{-7} \mathrm{~mm}$

C1 - Atomic structure and the periodic table	Conservation	Balanced equations
		Relative formula mass (RFM)
C2 - Bonding, structure, and the properties of matter	of mass	Concentration of solutions
C3-Quantitative		
chemistry		
C4-Chemical changes		
C5 - Energy changes		Amounts in equations
C6 - The rate and extent of chemical change		Limiting reactants
C7-Organic chemistry C8 - Chemical analysis	Moles	Percentage yield and atom economy
C9 - Chemistry of the atmosphere		Volumes of gases
C10-Using resources		Titrations

Challenge: Complete the equation and state the mass of the product.

Copper + sulphur \rightarrow
$5.1 \mathrm{~g} \quad 2.4 \mathrm{~g}$

Word:

Conservation (tier 3)

Digging Deeper:

‘Conservation' can also mean protecting natural resources such as wildlife, rivers and forests in order to protect them

Deconstruct it (root word):

From latin words con (which means together) and servare (which means to preserve)

Define it:

The act of preventing decay, waste or loss so the total value remains constant.

(similar words):

Link it

Maintain, preserve, sustain

Write a sentence of your own that uses the word conservation.

Write your own definition of the word conservation.

Which subjects or topics will this word be relevantto?

The Law of Conservation of Mass states that 'matter cannot be created or destroyed in a chemical reaction'.

Chemical reaction

This means that the number of atoms in the reactants...

...must be equal to the number of atoms in the products.

The total mass of products at the end of the reaction is equal to the total mass of the reactants at the beginning

The total mass of products at the end of the reaction is equal to the total mass of the reactants at the beginning

Reactants

Products

\square \int O_{2}

CO_{2}

Exam practice

Calcium oxide (quicklime) is made by heating calcium carbonate (limestone).
calcium carbonate
100 g \rightarrow calcium oxide + carbon dioxide
(a) 44 grams of carbon dioxide is produced when 100 grams of calcium carbonate is heated.

Calculate the mass of calcium oxide produced when 100 grams of calcium carbonate is heated.

$$
100-44=56
$$

(b) What mass of carbon dioxide could be made from 100 tonnes of calcium carbonate?

An ore of zinc contains zinc carbonate.
The equation for the reaction when zinc carbonate is heated is:

Exam practice

Complete the table below to show the number of atoms of carbon and oxygen in the formula of zinc carbonate.

Element	Number of atoms in the formula ZnCO_{3}
zinc, Zn	1
carbon, C	1
oxygen, O	3

When 125 g zinc carbonate is heated, 81 g zinc oxide is produced.
Calculate the mass of carbon dioxide produced.
$125-81=44$

Mass of carbon dioxide $=$ \qquad

The mass of the raw ingredients in a cake is always more than the mass of the final product... why?

Hint: You need to add baking powder when you bake a cake to make it rise. Baking powder is sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ and it decomposes when it is heated...

Challenge: How can you measure how much mass is being lost?

Some reactions appear to show a change in mass. According to the conservation of mass, this isn't possible!

Some reactions release a gas and the mass appears to decrease. The particles are just 'rearranged' and are lost into the air - mass is never lost!

Challenge: How can we measure the mass of gas released without using the conservation of mass?

Using a gas syringe!

Before the reaction, the mass of the solid marble chips and aqueous dilute HCl is 100 grams.

After the reaction, some of the particles are lost as CO_{2} gas, so the mass decreases to 95 grams.

Cotton wool is used to stop any of the acid from coming out of the beaker, whilst also allowing to CO_{2} gas to escape.

Losing mass

We can find out how much has been lost in a chemical reaction.
For example...
Sammy heats $5 g$ of copper carbonate. After heating, Sammy measured the mass of the product, copper oxide. The balance read 3.2 g .

How much carbon dioxide was made?

A student investigated the effect of heating calcium carbonate.

Exam practice

A student heated 10.0 g of calcium carbonate. At the end of the investigation, there was 5.6 g of a white powder in test tube \mathbf{A}.

Explain how this information about masses shows that a gas was produced.

The mass of the products should equal the mass of the reactants (due to the conservation of mass). The mass has decreased by 4.4 grams because a gas has escaped.

How coul relative formula masses of A particles ...

Imagine the reaction below...

Why are they different sizes???

They have different
ne number e wasted?

Could I cous. e particles? .ne particles are too small! Could th. react $1 g$ of substance A with $1 g$ of substance B ? No - the particles are different sizes, so 1 gram of A would be a different number of particles to 1 gram of B !

Word:

Relative (tier 2)

Digging Deeper:

Relative can also be used to describe a person connected by blood or marriage (family) e.g. brother, sister

Deconstruct it (Root word):

The word relative is derived from the Latin word relativum, which means having relation to or dependence on something else.

Define it:

Considered in relation or in proportion to something else

Link it (similar words):
 comparative, comparable, correlative

Use it:

The masses of protons, electrons and neutrons are all relative to each other.

Write a sentence of your own that uses the word relative.

Write your own

 definition of the word relative.Which subjects or topics will this word be relevant to?

The Relative Atomic Mass (RAM) is the average mass of an atom.
The atomic mass is always the biggest number associated with that element in the periodic table.

Hint:
Atomic number
Think of the mass
number as the most massive number!

The RAM of copper is
63.55, not 29.

Due to isotopes! (next slide...)

Challenge - Why is the mass number of copper a decimal?

Due to isotopes! Isotopes are atoms with the same number of protons but a different number of neutrons:

Some Cu atoms have a mass of 63. Some Cu atoms have a mass of 65:
${ }_{29}^{63} \mathrm{Cu}$
$p=29$
$e=29$
$n=34$
${ }_{29}^{65} \mathrm{Cu}$
$p=29$
$e=29$
$n=36$

The atomic mass number on the periodic table in an average mass of all Cu atoms, so it is a decimal number.

Quick quiz!

What is the RAM of aluminium?

Quick quiz!

What is the RAM of magnesium?

24

Quick quiz!

What is the RAM of xenon?

xenon
54

The Relative Formula Mass (RFM) is the average mass of an compound.
It is the total sum of the masses of each atom in a compound.
e.g. water, $\mathrm{H}_{2} \mathrm{O}$

Relative Formula Mass of water is $1+1+16=18$!

The Relative Formula Mass (RFM) is the average mass of an compound.
It is the total sum of the masses of each atom in a compound.
e.g. salt, NaCl

Relative Formula Mass of NaCl is $23+35.5=58.5$!

The RAM and RFM is easy for you to work out in your exams, as long as you have your trusty periodic table (AKA your best friend in any chemistry test!)

* The Lanthanides (atomic numbers $58-71$) and the Actinides (atomic numbers $90-103$) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and Cl have not been rounded to the nearest whole number.

LO: Calculate percentage by mass of an element in a compound

Exam example 1:

Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of lithium oxide $\left(\mathrm{Li}_{2} \mathrm{O}\right)$.
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{Li}=7 \quad \mathrm{O}=16$

$$
\begin{aligned}
\mathrm{Li}_{2} \mathrm{O} & =(7 \times 2)+16 \\
& =30
\end{aligned}
$$

Relative formula mass $=$ \qquad

LO: Calculate percentage by mass of an element in a compound

Exam example 2:

The formula for the chemical compound magnesium sulphate is MgSO_{4}.
Calculate the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of this compound. (Show your working.)

$$
\begin{aligned}
\mathrm{MgSO}_{4} & =24+32+(16 \times 4) \\
& =120
\end{aligned}
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 3:

Group 2 metal carbonates thermally decompose to produce a metal oxide and a gas.
(a) Give the formula of each product when calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is heated.

(b) The relative formula mass $\left(M_{r}\right)$ of a Group 2 metal carbonate is 197

Relative atomic masses $\left(A_{r}\right): \quad C=12 \quad O=16$
Calculate the relative atomic mass $\left(A_{\mathrm{r}}\right)$ of the Group 2 metal in the metal carbonate.
Name the Group 2 metal.

$$
\begin{aligned}
\mathrm{Mr} \text { of CO3 } & =12+(16 \times 3) \\
& =60
\end{aligned}
$$

As well as calculating RFM, you need to be able to calculate the percentage by mass of an element in a compound...

This sounds confusing, but it is simply working out one number as a percentage of another!
'Value' is the mass of the element
you are trying to work out.
'Total' is the total mass of
 the whole compound.

LO: Calculate percentage by mass of an element in a compound

Exam example 1:

Follow the steps to find the percentage of iron in iron oxide.
Relative atomic masses: O 16; Fe 56.
(i) Step 1

Calculate the relative formula mass of iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
\begin{aligned}
\text { Mr of iron oxide } & =(56 \times 2)+(16 \times 3) \\
& =160
\end{aligned}
$$

(ii) Step 2

Calculate the total relative mass of just the iron atoms in the formula, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Mr of iron $=56 \times 2=112$
(iii) Step 3

Calculate the percentage (\%) of iron in the iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$\%$ of iron in iron oxide	$=(112 \div 160) \times 100$
	$=70 \%$

Percentage of iron \qquad \%

LO: Calculate percentage by mass of an element in a compound

Exam example 2:

The percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is calculated by the equation:
percentage by mass $=\frac{\text { number of atoms of } \mathrm{O} \times \text { Relative atomic mass of oxygen }(\mathrm{O})}{\text { relative molecular mass of carbon dioxide }\left(\mathrm{CO}_{2}\right)} \times 100$
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{C}=12 \quad \mathrm{O}=16$
Calculate the percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Total mass of oxygen $=2 \times 16=32$
Total mass of $\mathrm{CO}_{2}=(2 \times 16)+12=44$

$$
\frac{32}{44} \times 100=72.7 \%
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 3:

Calculate the percentage by mass of titanium in titanium(IV) chloride $\left(\mathrm{TiCl}_{4}\right)$.
Give your answer to 3 significant figures.
Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{Cl}=35.5 ; \mathrm{Ti}=48$
Total mass of titanium $=48$
Total mass of $\mathrm{TiCl}_{4}=48+(35.5 \times 4)=190$

$$
(48 / 190) \times 100=25.26 \%
$$

$$
\text { Percentage of titanium by mass }=25.3
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 4:

Beryllium is found in beryllium aluminium silicate.
The formula of beryllium aluminium silicate is $\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}$
(b) What is the ratio of atoms of each element in beryllium aluminium silicate?

$$
\begin{equation*}
\text { Ratio of } \mathrm{Be}: \mathrm{Al}: \mathrm{Si}: \mathrm{O}=3: \underline{2}: \underline{6}: \underline{18} \tag{1}
\end{equation*}
$$

(c) What percentage by mass of beryllium is in beryllium aluminium silicate?

Give your answer to 2 significant figures.
Relative atomic mass $\left(A_{\mathrm{r}}\right)$ of $\mathrm{Be}=9$
Relative formula mass $\left(M_{\mathrm{r}}\right)$ of $\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}=537$
Total mass of $\mathrm{Be}=3 \times 9=36$
$(36 / 537) \times 100=5.02 \%$
Percentage of beryllium $=$ \qquad \%

What could this have to do with chemistry?

Challenge - How can concentration be

CONCENTRATION

It doesn't hurt to turn the TV off once in a while.

Put simply, concentration is a measure of how much 'stuff' you have in a volume of liquid, making a solution.

Which solution is the most concentrated?
How do you know?

316 g of KMnO_{4} in 1 litre of water

79 g of KMnO_{4} in 1 litre of water

79 g of KMnO_{4} in 500 mL of water

Put simply, concentration is a measure of how much 'stuff' you have in a volume of liquid, making a solution.

Key definition:

Concentration is a measure of how many solute particles are dissolved in a specific volume of solvent.

If a solution is more concentrated then there are more solute particles present in the solvent.

If a solution is less concentrated (dilute) then there are fewer solute particles present in the solvent.

High concentration

Low concentration

In chemistry we can calculate concentration by working out the number of grams in a dm^{3} of solution.

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass $(\mathrm{g}) \div$ Volume $\left(\mathrm{dm}^{3}\right)$

$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$ (or a litre)

Task: Use the triangle to write the equations for calculating mass and volume.

Mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$
Volume $\left(\mathrm{dm}^{3}\right)=$ mass $(\mathrm{g}) \div$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{4 0}$ grams of solute dissolved in $\mathbf{2 0 d m}{ }^{\mathbf{3}}$ of solvent. What is the concentration?

$$
\begin{aligned}
\text { Concentration } & =\text { mass }(\mathrm{g}) \div \text { volume }\left(\mathrm{dm}^{3}\right) \\
& =40 \mathrm{~g} \div 20 \mathrm{dm}^{3} \\
& =2 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has a concentration $6 \mathrm{~g} / \mathrm{dm}^{3}$. What is the mass of solute in $\mathbf{1 0 0} \mathbf{d m}^{\mathbf{3}}$ of this solution?

Mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$
$=6 \mathrm{~g} / \mathrm{dm}^{3} \times 100 \mathrm{dm}^{3}$
$=600 \mathrm{~g}$

Concentration (g/dm $\left.{ }^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

You must ensure you are working in dm^{3}, which may mean you need to do a conversion first (mean examiners!!)

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{5 0}$ grams of solute dissolved in $\mathbf{2 0 0 0} \mathrm{cm}^{\mathbf{3}}$ of solvent. What is the concentration?

Concentration $=$ mass $(\mathrm{g}) \div$ volume $\left(\mathrm{dm}^{3}\right)$

$$
2000 \mathrm{~cm}^{3}=2 \mathrm{dm}^{3}
$$

We Do

$$
\begin{aligned}
& =50 \mathrm{~g} \times 2 \mathrm{dm}^{3} \\
& =100 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

LO: Calculate the concentrations, volumes and masses in solutions


```
1 a. 0.25dm}\mp@subsup{}{}{3
    b. 0.125dm}\mp@subsup{}{}{3
    c. }1500\mp@subsup{\textrm{m}}{}{3
    d. }0.05\mp@subsup{\textrm{dm}}{}{3
    e. 1dm }\mp@subsup{}{}{3
2a. 10g/ 1dm = 10 g/dm 3
b. }150\mp@subsup{\textrm{cm}}{}{3}=0.150\mp@subsup{\textrm{dm}}{}{3
    1.5g / 0.150dm}\mp@subsup{}{}{3}=10\textrm{g}/\mp@subsup{\textrm{dm}}{}{3
c. }500\mp@subsup{\textrm{cm}}{}{3}=0.500\mp@subsup{\textrm{dm}}{}{3
    2.3g/0.500dm}\mp@subsup{}{}{3}=4.6\textrm{g}/\mp@subsup{\textrm{dm}}{}{3
3a. 2g/dm }\mp@subsup{}{}{3}\times0.5\mp@subsup{\textrm{dm}}{}{3}=10\textrm{g
e. \(1 \mathrm{dm}^{3}\)
```

2a. $10 \mathrm{~g} / 1 \mathrm{dm}^{3}=10 \mathrm{~g} / \mathrm{dm}^{3}$
b. $150 \mathrm{~cm}^{3}=0.150 \mathrm{dm}^{3}$
$1.5 \mathrm{~g} / 0.150 \mathrm{dm}^{3}=10 \mathrm{~g} / \mathrm{dm}^{3}$
c. $500 \mathrm{~cm}^{3}=0.500 \mathrm{dm}^{3}$ $2.3 \mathrm{~g} / 0.500 \mathrm{dm}^{3}=4.6 \mathrm{~g} / \mathrm{dm}^{3}$

3a. $2 \mathrm{~g} / \mathrm{dm}^{3} \times 0.5 \mathrm{dm}^{3}=10 \mathrm{~g}$
b. $250 \mathrm{~cm}^{3}=0.250 \mathrm{dm}^{3}$
$1.5 \mathrm{~g} / \mathrm{dm}^{3} \times 0.250 \mathrm{dm}^{3}=0.375 \mathrm{~g}$
c. $10 \mathrm{~cm}^{3}=0.01 \mathrm{dm}^{3}$
$0.4 \mathrm{~g} / \mathrm{dm}^{3 \times} 0.01 \mathrm{dm}^{3}=0.004 \mathrm{~g}$
d. $500 \mathrm{~cm}^{3}=0.5 \mathrm{dm}^{3}$
$5 \mathrm{~g} / \mathrm{dm}^{3 \times} 0.5 \mathrm{dm}^{3}=\mathbf{2 . 5} \mathrm{g}$

Self assessment

The sodium hydroxide solution in this investigation contains 80 grams per dm^{3}
The students use $40 \mathrm{~cm}^{3}$ of sodium hydroxide solution.
Calculate the mass of sodium hydroxide in $40 \mathrm{~cm}^{3}$

$40 \mathrm{~cm}^{3}=0.04 \mathrm{dm}^{3}$
Mass $=0.04 \mathrm{dm}^{3} \times 80 \mathrm{~g} / \mathrm{dm}^{3}$
$=3.2$ grams

$$
\text { Mass }=
$$

\qquad g

The copper chloride solution used in the investigation contained 300 grams per dm^{3} of solid CuCl_{2} dissolved in $1 \mathrm{dm}^{3}$ of water.

The students used $50 \mathrm{~cm}^{3}$ of copper chloride solution in each experiment.
Calculate the mass of solid copper chloride used in each experiment.
$50 \mathrm{~cm}^{3}=0.05 \mathrm{dm}^{3}$
Mass $=0.05 \mathrm{dm}^{3} \times 300 \mathrm{~g} / \mathrm{dm}^{3}$
$=15$ grams
(3)

