C3 - Quantitative Chemistry

Describe what could be done to solid sodium chloride to make it conduct electricity.	Explain why oxygen $\left(\mathrm{O}_{2}\right)$ is a gas at room temperature.	Why are alloys stronger than pure metals?
	nt) has	
It could be melted or it could be dissolved.	low boiling point due to weak intermolecular forces	the layers are disrupted, so atoms can't slide over each other.
Why do polymers have high melting points?	What is the mass number of aluminium?	How many of each atom are in the following compounds?
The atoms are bonded with strong covalent bonds that need a lot of energy to break.	27	$\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{H}, 1 \mathrm{~S}, 4 \mathrm{O} \\ \mathrm{CaCO}_{3}=1 \mathrm{Ca}, 1 \mathrm{~A}, 3 \mathrm{O} \\ 2 \mathrm{CaOH}_{2}=2 \mathrm{Ca}, 2 \mathrm{O}, 2 \mathrm{H} \\ 3 \mathrm{MgCl}_{2}=3 \mathrm{Mg}, 6 \mathrm{Cl} \end{gathered}$

Independent = concentration of acid
Dependent = temperature change
Control variables = VOLUME of acid, VOLUME of alkali, concentration of alkali, starting temperature

C3-Quantitative chemistry

Word:

Relative (tier 2)

Digging Deeper:

Relative can also be used to describe a person connected by blood or marriage (family) e.g. brother, sister

Deconstruct it (Root word):

The word relative is derived from the Latin word relativum, which means having relation to or dependence on something else.

Define it:

Considered in relation or in proportion to something else

Link it (similar words):
 comparative, comparable, correlative

Use it:

The masses of protons, electrons and neutrons are all relative to each other.

Write a sentence of your own that uses the word relative.

Write your own

 definition of the word relative.Which subjects or topics will this word be relevant to?

The Relative Atomic Mass (RAM) is the average mass of an atom.
The atomic mass is always the biggest number associated with that element in the periodic table.

Hint:
Atomic number
Think of the mass
number as the most massive number!

The RAM of copper is
63.55, not 29.

Due to isotopes! (next slide...)

Challenge - Why is the mass number of copper a decimal?

Due to isotopes! Isotopes are atoms with the same number of protons but a different number of neutrons:

Some Cu atoms have a mass of 63. Some Cu atoms have a mass of 65:
${ }_{29}^{63} \mathrm{Cu}$
$p=29$
$e=29$
$n=34$
${ }_{29}^{65} \mathrm{Cu}$
$p=29$
$e=29$
$n=36$

The atomic mass number on the periodic table in an average mass of all Cu atoms, so it is a decimal number.

The Relative Formula Mass (RFM) is the average mass of an compound.
It is the total sum of the masses of each atom in a compound.
e.g. water, $\mathrm{H}_{2} \mathrm{O}$

Relative Formula Mass of water is $1+1+16=18$!

The Relative Formula Mass (RFM) is the average mass of an compound.
It is the total sum of the masses of each atom in a compound.
e.g. salt, NaCl

Relative Formula Mass of NaCl is $23+35.5=58.5$!

The RAM and RFM is easy for you to work out in your exams, as long as you have your trusty periodic table (AKA your best friend in any chemistry test!)

* The Lanthanides (atomic numbers $58-71$) and the Actinides (atomic numbers $90-103$) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and Cl have not been rounded to the nearest whole number.

Exam example 1:

Calculate the relative formula mass $\left(M_{r}\right)$ of lithium oxide $\left(\mathrm{Li}_{2} \mathrm{O}\right)$.
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{Li}=7 \quad \mathrm{O}=16$

$$
\begin{aligned}
\mathrm{Li}_{2} \mathrm{O} & =(7 \times 2)+16 \\
& =30
\end{aligned}
$$

Relative formula mass $=$ \qquad

Exam example 2:

The formula for the chemical compound magnesium sulphate is MgSO_{4}.
Calculate the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of this compound. (Show your working.)

$$
\begin{aligned}
\mathrm{MgSO}_{4} & =24+32+(16 \times 4) \\
& =120
\end{aligned}
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 3:

Group 2 metal carbonates thermally decompose to produce a metal oxide and a gas.
(a) Give the formula of each product when calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is heated.

(b) The relative formula mass $\left(M_{r}\right)$ of a Group 2 metal carbonate is 197

Relative atomic masses $\left(A_{r}\right): \quad C=12 \quad O=16$
Calculate the relative atomic mass $\left(A_{\mathrm{r}}\right)$ of the Group 2 metal in the metal carbonate.
Name the Group 2 metal.

$$
\begin{aligned}
\mathrm{Mr} \text { of CO3 } & =12+(16 \times 3) \\
& =60
\end{aligned}
$$

As well as calculating RFM, you need to be able to calculate the percentage by mass of an element in a compound...

This sounds confusing, but it is simply working out one number as a percentage of another!
'Value' is the mass of the element
you are trying to work out.
'Total' is the total mass of
 the whole compound.

LO: Calculate percentage by mass of an element in a compound

Exam example 1:

Follow the steps to find the percentage of iron in iron oxide.
Relative atomic masses: O 16; Fe 56.
(i) Step 1

Calculate the relative formula mass of iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
\begin{aligned}
\text { Mr of iron oxide } & =(56 \times 2)+(16 \times 3) \\
& =160
\end{aligned}
$$

(ii) Step 2

Calculate the total relative mass of just the iron atoms in the formula, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Mr of iron $=56 \times 2=112$
(iii) Step 3

Calculate the percentage (\%) of iron in the iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$\%$ of iron in iron oxide	$=(112 \div 160) \times 100$
	$=70 \%$

Percentage of iron \qquad \%

LO: Calculate percentage by mass of an element in a compound

Exam example 2:

The percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is calculated by the equation:
percentage by mass $=\frac{\text { number of atoms of } \mathrm{O} \times \text { Relative atomic mass of oxygen }(\mathrm{O})}{\text { relative molecular mass of carbon dioxide }\left(\mathrm{CO}_{2}\right)} \times 100$
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{C}=12 \quad \mathrm{O}=16$
Calculate the percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Total mass of oxygen $=2 \times 16=32$
Total mass of $\mathrm{CO}_{2}=(2 \times 16)+12=44$

$$
\frac{32}{44} \times 100=72.7 \%
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 3:

Calculate the percentage by mass of titanium in titanium(IV) chloride $\left(\mathrm{TiCl}_{4}\right)$.
Give your answer to 3 significant figures.
Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{Cl}=35.5 ; \mathrm{Ti}=48$
Total mass of titanium $=48$
Total mass of $\mathrm{TiCl}_{4}=48+(35.5 \times 4)=190$

$$
(48 / 190) \times 100=25.26 \%
$$

$$
\text { Percentage of titanium by mass }=25.3
$$

LO: Calculate percentage by mass of an element in a compound

Exam example 4:

Beryllium is found in beryllium aluminium silicate.
The formula of beryllium aluminium silicate is $\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}$
(b) What is the ratio of atoms of each element in beryllium aluminium silicate?

$$
\begin{equation*}
\text { Ratio of } \mathrm{Be}: \mathrm{Al}: \mathrm{Si}: \mathrm{O}=3: \underline{2}: \underline{6}: \underline{18} \tag{1}
\end{equation*}
$$

(c) What percentage by mass of beryllium is in beryllium aluminium silicate?

Give your answer to 2 significant figures.
Relative atomic mass $\left(A_{\mathrm{r}}\right)$ of $\mathrm{Be}=9$
Relative formula mass $\left(M_{\mathrm{r}}\right)$ of $\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}=537$
Total mass of $\mathrm{Be}=3 \times 9=36$
$(36 / 537) \times 100=5.02 \%$
Percentage of beryllium $=$ \qquad \%

Describe the measurement of amounts of substances in moles

What is a mole?

Challenge - How much would one mole of magnesium weigh? How much would one mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ weigh?

How big is a mole?

One mole of any substance contains 6.02×10^{23} atoms.

One mole of any substance contains exactly the same amount of particles as one mole of any other substance.

The mass of one mole of an substance (in grams) is equal to its RFM.
https://www.youtube.com/watch?v=3Cq1Std7Mb8
Avogadro's constant

$$
=6.02 \times 10^{23}
$$

Play up to 1:47

Why do we need to know about moles?

We can use this formula to work out how much of a substance we need in a reaction:

Number of moles $=\quad$ Mass (g)
Formula Mass

Questions involving moles

Calculate the
 mass

Number of moles $=$ Mass (g)

Formula Mass

Calculate the number of moles in 40 grams of sodium:
Moles = mass / RFM

$$
\text { Moles = } 40 \text { / } 23
$$

Moles $=1.74$ (3sf)

Number of moles $=$

Mass (g)
Formula Mass

Calculate the number of moles in 24 grams of magnesium:

Moles = mass / RFM

$$
\text { Moles = } 24 \text { / } 12
$$

$$
\text { Moles = } 2.00 \text { (3sf) }
$$

Number of moles $=$

Mass (g)
Formula Mass

Calculate the number of moles in a given mass, calculate the mass of a given number of moles

W_{e} Do

Calculate the mass of 10 moles of magnesium:

$$
\begin{aligned}
& \text { Mass }=\text { moles } \times \text { RFM } \\
& \text { Mass }=10 \times 24 \\
& \text { Mass }=240 \text { grams }
\end{aligned}
$$

Number of moles $=$

Mass (g)
Formula Mass

Calculate the number of moles in a given mass, calculate the mass of a given number of moles

Exam example 1:

A 0.050 mol sample of a hydrocarbon was burned in excess oxygen.
The products were 3.60 g of water and 6.60 g of carbon dioxide.
(i) Calculate the number of moles of carbon dioxide produced.

Relative atomic masses: $\mathrm{C}=12 ; \mathrm{O}=16$.

Moles $=$	mass $/ \mathrm{RFM}$
Moles $=$	$6.60 / 44$
Moles of carbon dioxide $=\quad 0.15$ moles	

Calculate the number of moles in a given mass, calculate the mass of a given number of moles

Exam example 2:

A bag of fertiliser contains 14.52 kg of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.
Relative formula mass $\left(M_{\mathrm{r}}\right): \mathrm{NH}_{4} \mathrm{NO}_{3}=80$
Calculate the number of moles of ammonium nitrate in the bag of fertiliser.
Give your answer in standard form to 2 significant figures.

$$
\begin{equation*}
\text { mass }=14520 \mathrm{~g} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { moles = } 14520 \text { g / } 80 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=181.5(\mathrm{~mol}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=1.8 \times 102(\mathrm{~mol}) \tag{1}
\end{equation*}
$$

Moles of ammonium nitrate $=$ \qquad mol

Calculate the number of moles in a given mass, calculate the mass of a given number of moles

Exam example 3:

Calculate the number of molecules in 14 g of carbon dioxide.
Give your answer in standard form.
Relative atomic masses $\left(A_{r}\right): C=14 ; \mathrm{O}=16$
Moles = mass $/$ RFM
$=14 / 44$
= 0.3181818...
1 mole has 6.022×10^{23} molecules
$0.31818 \ldots \times 6.022 \times 10^{23}=1.91 \times 10^{23}$ molecules
Answer $=1.91 \times 10^{23}$ molecules

LO: Calculate the moles of substances in a balanced symbol equation.

LET'S RECAP...

> Because of the conservation of mass!
> Mass reactants = mass products.

Challenge: What do the large numbers in balancing equations show?

Balanced equations can show us how many moles of reactants can be used to produce a certain amount of products:

$$
\text { e.g. } \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

1 mole of magnesium reacts with 2 moles of hydrochloric acid...
...to form 1 mole of magnesium chloride and 1 mole of hydrogen.

Remember, everything is directly proportional! If you double the moles on the reactants side, you have to double the moles on the products side:

$$
\text { e.g. } 2 \mathrm{Mg}+4 \mathrm{HCl} \rightarrow 2 \mathrm{MgCl}_{2}+2 \mathrm{H}_{2}
$$

```
LO: Calculate the moles of substances in a balanced symbol equation.
```


Example:

How many moles of $\mathrm{H}_{2} \mathrm{O}$ will be made when six moles of propane fuel react with oxygen?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

If you put a 6 in front of $\mathrm{C}_{3} \mathrm{H}_{8}$ (6 moles of propane), then you have to multiply all other mole numbers by 6 .

$$
6 \mathrm{C}_{3} \mathrm{H}_{8}+30 \mathrm{O}_{2} \rightarrow 18 \mathrm{CO}_{2}+24 \mathrm{H}_{2} \mathrm{O}
$$

LO: Calculate the moles of substances in a balanced symbol equation.

Exam example:

Calcium oxide (quicklime) is made by heating calcium carbonate (limestone).

```
calcium carbonate }->\mathrm{ calcium oxide + carbon dioxide
    100\textrm{g}
```

The conservation of mass says that mass reactants = mass of products.
(a) 44 grams of carbon dioxide is produced when 100 grams of calcium carbonate is heated.

Calculate the mass of calcium oxide produced when 100 grams of calcium carbonate is heated.

$$
100 g-44 g=66 g
$$

\qquad g
(b) What mass of carbon dioxide could be made from 100 tonnes of calcium carbonate?

If $\mathbf{1 0 0 g}$ of calcium carbonate makes $\mathbf{4 4 g}$ of carbon dioxide,
how much would 100 tonnes make?

We can use the numbers from balanced equations...
... along with our moles equation...
... to predict the mass of products and reactants in chemical equations.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

5.3.2.2 Amounts of substances in equations (HT only)

Students should be able to:

- calculate the masses of substances shown in a balanced symbol equation
- calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product.

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Task: Write down the flow map to show how to predict masses formed from balanced equations.

We are going to have a go at some practice questions together.

Step 1: Write down the mass of substance 1 (that you are given in the question)

Step 2: Calculate the RFM for all substances involved.

Step 3: Calculate the moles of substance 1 (using moles $=$ mass \div RFM)

Step 4: Use the molar ratio to calculate the moles of the substance 2

Step 5: Calculate the mass of substance 2 (using mass $=$ moles \times RFM)

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Question: Calculate the mass of calcium oxide formed from 11 grams of calcium in the reaction below.

$$
2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}
$$

Mass:	$\mathbf{1 1}$ grams	$0.275 \mathrm{~mol} \times 56=15.4$ grams
RFM:	$\mathbf{4 0}$	$40+16=56$
Moles:	$11 \div 40=\mathbf{0 . 2 7 5 \mathrm { mol }}$	$\mathbf{0 . 2 7 5 \mathrm { mol }}$
Ratio	2 Ca	$:$

Therefore, the molar ratio is 1:1.
If there are 0.275 moles of Ca , there are also 0.275 moles for CaO .

So $\mathbf{1 5 . 4}$ grams of calcium oxide will be formed from 11 grams of calcium!

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q1. At the start of a reaction there was 174.5 g of uranium hexafluoride, UF_{6}.
Relative atomic masses: F 19; U 235

$$
\mathrm{UF}_{6}+3 \mathrm{Ca} \rightarrow 3 \mathrm{CaF}_{2}+\mathrm{U}
$$

(i) Calculate the relative formula mass of uranium hexafluoride, UF_{6}.

$$
\text { Relative formula mass } \mathrm{UF}_{6}=\ldots \mathrm{g}
$$

(ii) Calculate the mass of uranium that would be produced from 134.5 g of uranium hexafluoride.

Mass of uranium = g

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q2. (i) The formula for the chemical compound magnesium sulphate is MgSO_{4}. Calculate the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of this compound. (Show your working.)
(ii) Magnesium sulphate can be made from magnesium and dilute sulphuric acid:
$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$
Calculate the mass of magnesium sulphate that would be obtained from 4 g of magnesium. (Show your working.)
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q3. (i) Calculate the formula mass (M_{r}) of the compound iron (III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$. (Show your working.)
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the mass of iron produced when 32 g of iron (III) oxide is completely reduced by aluminium. (Show your working.)

The reaction is shown in the symbol equation:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

\qquad
\qquad
\qquad
\qquad
Answer =
\qquad grams

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q4. The balanced symbol equation for the reaction is

$$
\mathrm{H}_{2}(\mathrm{~g}) \quad+\quad \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad 2 \mathrm{HCl}(\mathrm{~g})
$$

Starting with 2 g of hydrogen, what mass of hydrogen chloride would be produced? (Relative atomic masses: $\mathrm{H}=1 ; \mathrm{Cl}=35.5$)
\qquad
\qquad
\qquad

Mass of hydrogen chloride $=$

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q5. $\mathrm{GeO}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{Ge}+2 \mathrm{H}_{2} \mathrm{O}$
You Do It Together

Calculate the mass of germanium which could be made from 525 g of germanium oxide. (Relative atomic masses: $\mathrm{Ge}=73 ; \mathrm{O}=16$).

Mass \qquad

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q6. A student wanted to make 11.0 g of copper chloride.
The equation for the reaction is:

$$
\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Relative atomic masses, $A_{5}: \mathrm{H}=1 ; \mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{Cl}=35.5 ; \mathrm{Cu}=63.5$
Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.
\qquad
\qquad
\qquad
\qquad
Mass of copper carbonate $=$ \qquad g

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q7. $\quad 4 \mathrm{Na}(\mathrm{s})+\mathrm{TiCl}_{4}(\mathrm{I}) \rightarrow \mathrm{Ti}(\mathrm{s})+4 \mathrm{NaCl}(\mathrm{s})$
Calculate the mass of titanium that can be extracted from 570 kg of titanium chloride.
Relative atomic masses: Cl 35.5 ; Ti 48.
Needs to be in grams!
You Do It Alone

Needs

Rem
\qquad
\qquad
\qquad
\qquad
Mass of titanium = \qquad kg
(Total 3 marks)

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q8.
Limestone is a useful mineral. Every day, large amounts of limestone are heated in limekilns to produce lime. Lime is used in the manufacture of iron, cement and glass and for neutralising acidic soils.

$$
\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}+\mathrm{CO}_{2}
$$

Calculate the mass of lime, CaO , that would be produced from 250 tonnes of limestone, CaCO_{3}.
Relative atomic masses: C 12; O 16; Ca 40.
\qquad
\qquad

Mass of lime $=$ \qquad tonnes

LO: Calculate the masses of reactants and products from a balanced symbol equation.

Q9. Ammonia is manufactured from nitrogen and hydrogen.
The equation for the reaction between them is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Calcutate the mass, in tonnes, of ammonia which could be produced from (560 tonnes of nitrogen.

Needs to be in grams!

In chemistry we can calculate concentration by working out the number of grams in a dm^{3} of solution.

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass $(\mathrm{g}) \div$ Volume $\left(\mathrm{dm}^{3}\right)$

$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$ (or a litre)

Task: Use the triangle to write the equations for calculating mass and volume.

Mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$
Volume $\left(\mathrm{dm}^{3}\right)=$ mass $(\mathrm{g}) \div$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{4 0}$ grams of solute dissolved in $\mathbf{2 0 d m}{ }^{\mathbf{3}}$ of solvent. What is the concentration?

$$
\begin{aligned}
\text { Concentration } & =\text { mass }(\mathrm{g}) \div \text { volume }\left(\mathrm{dm}^{3}\right) \\
& =40 \mathrm{~g} \div 20 \mathrm{dm}^{3} \\
& =2 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has a concentration $6 \mathrm{~g} / \mathrm{dm}^{3}$. What is the mass of solute in $\mathbf{1 0 0} \mathbf{d m}^{\mathbf{3}}$ of this solution?

Mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$
$=6 \mathrm{~g} / \mathrm{dm}^{3} \times 100 \mathrm{dm}^{3}$
$=600 \mathrm{~g}$

Concentration (g/dm $\left.{ }^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

You must ensure you are working in dm^{3}, which may mean you need to do a conversion first (mean examiners!!)

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{5 0}$ grams of solute dissolved in $\mathbf{2 0 0 0} \mathrm{cm}^{\mathbf{3}}$ of solvent. What is the concentration?

Concentration $=$ mass $(\mathrm{g}) \div$ volume $\left(\mathrm{dm}^{3}\right)$

$$
2000 \mathrm{~cm}^{3}=2 \mathrm{dm}^{3}
$$

We Do

$$
\begin{aligned}
& =50 \mathrm{~g} \times 2 \mathrm{dm}^{3} \\
& =100 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

LO: Describe the relationship between mass, volume and concentration

The sodium hydroxide solution in this investigation contains 80 grams per dm^{3}
The students use $40 \mathrm{~cm}^{3}$ of sodium hydroxide solution.
Calculate the mass of sodium hydroxide in $40 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& 40 \mathrm{~cm}^{3}=0.04 \mathrm{dm}^{3} \\
& \text { Mass }=0.04 \mathrm{dm}^{3} \times 80 \mathrm{~g} / \mathrm{dm}^{3} \quad \text { Mass }=[\mathrm{g} \\
& =3.2 \text { grams }
\end{aligned}
$$

The copper chloride solution used in the investigation contained 300 grams per dm^{3} of solid CuCl_{2} dissolved in $1 \mathrm{dm}^{3}$ of water.

The students used $50 \mathrm{~cm}^{3}$ of copper chloride solution in each experiment.
Calculate the mass of solid copper chloride used in each experiment.
$50 \mathrm{~cm}^{3}=0.05 \mathrm{dm}^{3}$

$$
\begin{equation*}
\text { Mass }=\quad=15 \text { grams } \tag{3}
\end{equation*}
$$

Mass $=0.05 \mathrm{dm}^{3} \times 300 \mathrm{~g} / \mathrm{dm}^{3}$

Titrations (C3) TRIPLE ONLY

 Monday, 25 September 20231. How is the periodic table arranged?
2. Why did Mendeleev leave gaps in his periodic table?
3. What does the mass number of an atom tell you?
4. What is an isotope?
5. What did the gold foil experiment show?
6. Complete the word equations:

Magnesium oxide + hydrochloric acid \rightarrow Aluminium hydroxide + nitric acid \rightarrow Barium carbonate + sulphuric acid \rightarrow
7. What ion is present in all acids? What ion is present in all alkalis? Challenge: Write a half equation showing a reaction between an acid and an alkali. Extra challenge: Write the symbol equations for reactions in question 6.

Titrations (C3) TRIPLE ONLY

 Monday, 25 September 20231. How is the periodic table arranged?

Elements are arranged by increasing atomic (proton) number (NOT MASS NUMBER!)
2. Why did Mendeleev leave gaps in his periodic table?

For undiscovered elements (that were later discovered.)
3. What does the mass number of an atom tell you?

The number of protons + the number of neutrons
4. What is an isotope?

Isotopes contain the same number of protons but a different number of neutrons, so isotopes have different mass numbers.
5. What did the gold foil experiment show?

Most of the alpha particles passed straight through the foil. This showed that the majority of the atom is just empty space.
A small number of alpha particles were deflected. This showed that there is a ball of positive charge in the centre of the atom (the nucleus).

Titrations (C3) TRIPLE ONLY

 Monday, 25 September 20236. Complete the word equations:

Magnesium oxide + hydrochloric acid \rightarrow Magnesium chloride + water
Aluminium hydroxide + nitric acid \rightarrow Aluminium nitrate + water
Barium carbonate + sulphuric acid \rightarrow Barium sulphate + water + carbon dioxide
7. What ion is present in all acids? What ion is present in all alkalis?
$\mathrm{H}+$ ions are present in all acids. OH - ions are present in all alkalis.

Extra challenge: Write a half equation showing a reaction between an acid and an alkali.

$$
\mathrm{H}++\mathrm{OH}-\rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Challenge: Write the symbol equations for reactions in question 6.

$$
\begin{gathered}
\mathrm{MgO}+\mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
\end{gathered}
$$

C1 - Atomic structure and the periodic table	Conservation	Balanced equations
		Relative formula mass (RFM)
C2 - Bonding, structure, and the properties of matter	of mass	Concentration of solutions
C3-Quantitative		
chemistry		
C4-Chemical changes		
C5 - Energy changes		Amounts in equations
C6 - The rate and extent of chemical change		Limiting reactants
C7-Organic chemistry C8 - Chemical analysis	Moles	Percentage yield and atom economy
C9 - Chemistry of the atmosphere		Volumes of gases
C10-Using resources		Titrations

Key definition:

Neutralisation is when an acid reacts with a base, to form a neutral solution. A base that can dissolve in water is called an alkali.

Bases can be metal oxides e.g. MgO or metal hydroxides e.g. LiㅇH. If an acid and a metal oxide/hydroxide react together, salt and water are formed.

General word equation:

$$
\text { acid + metal oxide/metal hydroxide } \rightarrow \text { salt + water }
$$

Bases can also be metal carbonates e.g. calcium carbonate, CaCO_{3}. If an acid and a metal carbonate react together, carbon dioxide is also formed:

General word equation:
acid + metal carbonate \rightarrow salt + water + carbon dioxide

How do we name the salts formed in neutralisation reactions?

ACID

BASE

SALT

WATER

The first part of the salt comes from the metal in the base.
The second part of the salt comes from the acid used:
Nitric acid = nitrate
Sulphuric acid = sulphate Hydrochloric acid = chloride

The first part of the salt comes from the metal in the base.

The second part of the salt comes from the acid used:
Nitric acid = nitrate
Sulphuric acid = sulphate
Hydrochloric acid = chloride

magnesium oxide	$+\begin{gathered}\text { hydrochloric } \\ \text { acid }\end{gathered}$	$\Rightarrow \quad \begin{gathered} \text { magnesium } \\ \text { chloride } \end{gathered}$	+ water
BASE	ACID	SALT	WATER

The first part of the salt comes from the metal in the base.

The second part of the salt comes from the acid used:
Nitric acid = nitrate
Sulphuric acid = sulphate
Hydrochloric acid = chloride

sodium hydroxide$+$ nitric acid	\rightarrow	sodium nitrate	+ water
BASE	ACID	SALT	WATER

The first part of the salt comes from the metal in the base.

The second part of the salt comes from the acid used:
Nitric acid = nitrate
Sulphuric acid = sulphate
Hydrochloric acid = chloride
$\underset{\text { oxide }}{\text { aluminium }}+\underset{\text { acid }}{\text { hydrochloric }} \longrightarrow \begin{gathered}\text { aluminium } \\ \text { chloride }\end{gathered}+$ water

The first part of the salt comes from the metal in the base.

The second part of the salt comes from the acid used:
Nitric acid = nitrate
Sulphuric acid = sulphate
Hydrochloric acid = chloride

magnesium + sulphuric
 hydroxide acid
 magnesium + water sulphate

The first part of the salt comes from the metal in the base.

The second part of the salt comes from the acid used:
Nitric acid $\left(\mathrm{HNO}_{3}\right)=$ nitrate
Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=$ sulphate
Hydrochloric acid $(\mathrm{HCl})=$ chloride

BASE ACID

Titrations

Strong acid + strong alkali \rightarrow salt + water

$$
=\text { NEUTRALISATION }
$$

The products are only neutral if they are in exactly the right quantities. If not, either the acid or the alkali will be in excess.

If there is more acid than alkali to start with in a neutralisation reaction, what will happen?

- The final solution will be acidic.

Titrations

Strong acid + strong alkali \rightarrow salt + water

$$
=\text { NEUTRALISATION }
$$

Titration is a method of measuring precise volumes in a neutralisation reaction.

The point at which an acid have reacted completely is called the end point.

This is shown using an indicator e.g. phenolphthalein - colour change from pink to colourless
https://www.youtube.com/watch?v=saRBT5oZfh8
https://www.youtube.com/watch?v=PVv76MU A6dc\&feature=youtu.be
https://www.youtube.com/watch?v=vn3Rx3g1VPk

Titration method

Step 1:
Step 3:
Step 4:
Step 5:
Step 6:

Titration method

Step 1: Use a pipette to measure $25 \mathrm{~cm}^{3}$ of sodium hydroxide into a conical flask. Place the conical flask on a white tile.

Step 2: Carefully fill a burette with hydrochloric acid and place it in a clamp, ensuring the tap is closed.

Step 3: Place a few drops of indicator into the sodium hydroxide and swirl the conical flask. Phenolphthalein will turn the NaOH pink.

Step 4: Open the tap on the burette and slowly add the hydrochloric acid to the sodium hydroxide, whilst swirling the flask.

Step 5: When the solution turns from pink to colourless, the solution is neutral. Record the volume of acid added in total from the burette.

Step 6: Repeat the experiment 3 times and calculate the mean volume of acid used.

Exam practice

Sodium hydroxide reacts with hydrochloric acid.
The diagram shows apparatus that can be used to find the volume of sodium hydroxide reacting with $25.0 \mathrm{~cm}^{3}$ hydrochloric acid.

(a) Describe a method to find the exact volume of sodium hydroxide that reacts with $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

Exam practice

fill burette with sodium hydroxide
add sodium hydroxide from the burette to the hydrochloric acid and indicator
stop when colour changes
measure volume used from burette
plus any two from:

- stand flask on white tile
- swirl
- add dropwise near the endpoint
- repeat

As well as knowing how to calculate moles from mass, you need to be able to calculate moles from concentration:

Key definition:

Concentration is a measure of how many solute particles are dissolved in a specific volume of solvent.

If a solution is more concentrated then there are more solute particles present in the solvent.

If a solution is less concentrated (dilute) then there are fewer solute particles present in the solvent.

High concentration

Low concentration

Concentration (g/dm $\left.{ }^{3}\right)=$ Mass (g) / Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=$ Moles $(\mathrm{mol}) /$ Volume $\left(\mathrm{dm}^{3}\right)$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{4 0}$ grams of solute dissolved in $\mathbf{2 0 d m}{ }^{\mathbf{3}}$ of solvent. What is the concentration?

$$
\begin{aligned}
\text { Concentration } & =\text { mass }(\mathrm{g}) \div \text { volume }\left(\mathrm{dm}^{3}\right) \\
& =40 \mathrm{~g} \div 20 \mathrm{dm}^{3} \\
& =2 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has a concentration $6 \mathrm{~g} / \mathrm{dm}^{3}$. What is the mass of solute in $\mathbf{1 0 0} \mathbf{d m}^{\mathbf{3}}$ of this solution?

Mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$
$=6 \mathrm{~g} / \mathrm{dm}^{3} \times 100 \mathrm{dm}^{3}$
$=600 \mathrm{~g}$

Concentration (g/dm $\left.{ }^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

You must ensure you are working in dm^{3}, which may mean you need to do a conversion first (mean examiners!!)

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ Mass (g) \div Volume $\left(\mathrm{dm}^{3}\right)$

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text { (or a litre) }
$$

Example:
A solution has $\mathbf{5 0}$ grams of solute dissolved in $\mathbf{2 0 0 0} \mathrm{cm}^{\mathbf{3}}$ of solvent. What is the concentration?

Concentration $=$ mass $(\mathrm{g}) \div$ volume $\left(\mathrm{dm}^{3}\right)$

$$
2000 \mathrm{~cm}^{3}=2 \mathrm{dm}^{3}
$$

We Do

$$
\begin{aligned}
& =50 \mathrm{~g} \times 2 \mathrm{dm}^{3} \\
& =100 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

The sodium hydroxide solution in this investigation contains 80 grams per dm^{3}
The students use $40 \mathrm{~cm}^{3}$ of sodium hydroxide solution.
Calculate the mass of sodium hydroxide in $40 \mathrm{~cm}^{3}$
$40 \mathrm{~cm}^{3}=0.04 \mathrm{dm}^{3}$
$=3.2$ grams
\qquad
Mass $=0.04 \mathrm{dm}^{3} \times 80 \mathrm{~g} / \mathrm{dm}^{3}$
$=3.2$ grams

The copper chloride solution used in the investigation contained 300 grams per dm^{3} of solid CuCl_{2} dissolved in $1 \mathrm{dm}^{3}$ of water.

The students used $50 \mathrm{~cm}^{3}$ of copper chloride solution in each experiment.
Calculate the mass of solid copper chloride used in each experiment.
$50 \mathrm{~cm}^{3}=0.05 \mathrm{dm}^{3}$

$$
\text { Mass }=
$$ g

Mass $=0.05 \mathrm{dm}^{3} \times 300 \mathrm{~g} / \mathrm{dm}^{3}$

Calculate the mass of sodium hydroxide in $30.0 \mathrm{~cm}^{3}$ of a $0.105 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.
Relative formula mass $\left(M_{r}\right): \quad \mathrm{NaOH}=40$

```
(moles }=)\frac{30}{1000}\times0.10
or 0.00315 (mol)
or
(mass per dm}\mp@subsup{}{}{3}=)0.105\times4
or 4.2(g)
(mass = \frac{30}{1000}\times0.105\times40)
=0.126 (g)
\(\left(\right.\) mass \(\left.=\frac{30}{1000} \times 0.105 \times 40\right)\)
\(=0.126(\mathrm{~g})\)

The student did another experiment using \(20 \mathrm{~cm}^{3}\) of sodium hydroxide solution with a concentration of \(0.18 \mathrm{~mol} / \mathrm{dm}^{3}\).

Relative formula mass \(\left(M_{r}\right)\) of \(\mathrm{NaOH}=40\)
Calculate the mass of sodium hydroxide in \(20 \mathrm{~cm}^{3}\) of this solution.
\[
\begin{aligned}
& \text { (f) } \frac{20}{1000} \times 0.18=\text { no of moles } \\
& \text { or } \\
& 0.15 \times 40 \mathrm{~g} \\
& 0.144(\mathrm{~g})
\end{aligned}
\]

Mark schemes for the following questions are in the notes section

\section*{Exam practice 1}

A student titrated \(25.0 \mathrm{~cm}^{3}\) portions of dilute sulfuric acid with a \(0.105 \mathrm{~mol} / \mathrm{dm}^{3}\) sodium hydroxide solution.
(c) The table below shows the student's results.
\begin{tabular}{|l|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Titration \\
\(\mathbf{1}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{2}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{3}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{4}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{5}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Volume of \\
Sodium \\
hydroxide \\
solution in \(\mathrm{cm}^{3}\)
\end{tabular} & 23.50 & 21.10 & 22.10 & 22.15 & 22.15 \\
\hline
\end{tabular}

The equation for the reaction is:
\[
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\]

Calculate the concentration of the sulfuric acid in \(\mathrm{mol} / \mathrm{dm}^{3}\)
Use only the student's concordant results.
Concordant results are those within \(0.10 \mathrm{~cm}^{3}\) of each other.
Concentration of sulfuric acid = \(\qquad\) \(\mathrm{mol} / \mathrm{dm}^{3}\)

\section*{Exam practice 2}
(c) A student used a pipette to add \(25.0 \mathrm{~cm}^{3}\) of sodium hydroxide of unknown concentration to a conical flask.

The student carried out a titration to find out the volume of \(0.100 \mathrm{~mol} / \mathrm{dm}^{3}\) sulfuric acid needed to neutralise the sodium hydroxide.

Describe how the student would complete the titration.
You should name a suitable indicator and give the colour change that would be seen.
adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask)
do not accept universal indicator
(adds the acid from a) burette
with swirling or dropwise towards the end point or until the indicator just changes colour
until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)

\section*{Exam practice 2}
(d) The student carried out five titrations. Her results are shown in the table below.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Titration \\
1
\end{tabular} & \begin{tabular}{c} 
Titration \\
2
\end{tabular} & \begin{tabular}{c} 
Titration \\
3
\end{tabular} & \begin{tabular}{c} 
Titration \\
4
\end{tabular} & \begin{tabular}{c} 
Titration \\
5
\end{tabular} \\
\hline \begin{tabular}{l} 
Volume of 0.100 \\
mol \(/ \mathrm{dm}^{3}\) sulfuric \\
acid in \(\mathrm{cm}^{3}\)
\end{tabular} & 27.40 & 28.15 & 27.05 & 27.15 & 27.15 \\
\hline
\end{tabular}

Concordant results are within \(0.10 \mathrm{~cm}^{3}\) of each other.
Use the student's concordant results to work out the mean volume of \(0.100 \mathrm{~mol} / \mathrm{dm}^{3}\) sulfuric acid added.

Mean volume \(=\) \(\qquad\) \(\mathrm{cm}^{3}\)
(e) The equation for the reaction is:
\[
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\]

Calculate the concentration of the sodium hydroxide.
Give your answer to three significant figures.
Concentration \(=\) \(\qquad\) \(\mathrm{mol} / \mathrm{dm}^{3}\)

\section*{Exam practice 3}

A student titrated citric acid with sodium hydroxide solution.
This is the method used.
1. Pipette \(25.0 \mathrm{~cm}^{3}\) of sodium hydroxide solution into a conical flask.
2. Add a few drops of thymol blue indicator to the sodium hydroxide solution. Thymol blue is blue in alkali and yellow in acid.
3. Add citric acid solution from a burette until the end-point was reached.
(b) Explain what would happen at the end-point of this titration.

Refer to the acid, the alkali and the indicator in your answer.
indicator changes colour
from blue to yellow allow from blue to green
(when) the acid and alkali are (exactly) neutralised or
(when) no excess of either acid or alkali

\section*{Exam practice 3}
(d) The table shows the student's results.
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Titration \\
\(\mathbf{1}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{2}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{3}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{4}\)
\end{tabular} & \begin{tabular}{c} 
Titration \\
\(\mathbf{5}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Volume of citric \\
acid solution in \\
\(\mathrm{cm}^{3}\)
\end{tabular} & 13.50 & 12.10 & 11.10 & 12.15 & 12.15 \\
\hline
\end{tabular}

The equation for the reaction is:
\[
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}
\]

The concentration of the sodium hydroxide was \(0.102 \mathrm{~mol} / \mathrm{dm}^{3}\)
Concordant results are those within \(0.10 \mathrm{~cm}^{3}\) of each other.
Calculate the concentration of the citric acid in \(\mathrm{mol} / \mathrm{dm}^{3}\)
Use only the concordant results from the table in your calculation.
You must show your working.

Concentration \(=\) \(\qquad\) \(\mathrm{mol} / \mathrm{dm}^{3}\)```

