Title - C6 Rates of reaction revision

Monday, 25 September 2023

Do it now:

What is potable water?

Water that is safe to drink (not pure water!)

What are the four main steps of sewage treatment?

1. Screening
2. Sedimentation
3. Anaerobic digestion of sludge
4. Aerobic digestion of effluent

What are the two methods of desalination?

1. Distillation
2. Reverse osmosis

What is sustainable development?

Development that meets the needs of current generations, without compromising the needs of future generations.

Describe the practical method for determining the mass of dissolved solids in a sample of water.

1. Measure the mass of an empty evaporating basin.
2. Fill the basin with water.
3. Evaporate all of the water using a Bunsen burner.
4. Reweigh the empty evaporating dish.

Word:

Rate (tier 2)

The speed at which something happens or changes.

Define it:

Digging Deeper:

Rate can also mean to judge the value or character of something e.g. He is rated as one of the best footballers in the world.

Deconstruct it (root word):

From Latin word 'rata' meaning 'proportional share'.

Use it:

The rate of reaction increases as temperature increases

Write a sentence of your own that uses the word rate.

Write your own

 definition of the word rate.Which subjects or topics will this word be relevant to?

Describe what is needed for a successful reaction

LET'S RECAP...

1. Reactants

2. ACTIVATION ENERGY!

Challenge: How could you measure how quickly a reaction is happening?

Describe what is needed for a successful reaction
$A+B \rightarrow C+D$

Chemicals going in
= REACTANTS

Chemicals being made = PRODUCTS

Chemical reactions can occur only when reacting particles collide with each other with sufficient energy.

The minimum amount of energy that particles must have to react is called the activation energy.

Explain how to measure the rate of a reaction.

LEARN THESE!

$$
\text { Mean rate of reaction }(\mathrm{g} / \mathrm{s})=\frac{\text { mass of reactant used }(\mathrm{g})}{\text { time taken }(\mathbf{s})}
$$

Mean rate of reaction $\left(\mathrm{cm}^{3} / \mathrm{s}\right)=$ volume of product formed $\left(\mathrm{cm}^{3}\right)$ time taken (s)

Q1. A lump of magnesium is added to hydrochloric acid in a beaker. After 30 seconds, the magnesium had decreased in mass by 45 g . Calculate the mean rate of reaction and give the units.

45 grams $\div 30$ seconds

$$
=1.5 \mathrm{~g} / \mathrm{s}
$$

Q2. 5 grams of lithium was added to $100 \mathrm{~cm}^{3}$ of water in a beaker.
After 30 seconds, $81 \mathrm{~cm}^{3}$ of gas had been produced. Calculate the mean rate of reaction and give the units.

$$
81 \mathrm{~cm}^{3} \div 30 \text { seconds }
$$

$$
=2.7 \mathrm{~cm}^{3} / \mathrm{s}
$$

Q3. Magnesium carbonate was added to sulphuric acid. After 3 minutes, $60 \mathrm{~cm}^{3}$ of gas had been produced. Calculate the mean rate of reaction and give the units.

3 minutes $=120$ seconds $60 \mathrm{~cm}^{3} \div 120$ seconds

$$
=0.5 \mathrm{~cm}^{3} / \mathrm{s}
$$

Q4. A student reacts magnesium ribbon in hydrochloric acid.
0.3 kg of magnesium is used up in the first 50 seconds of the reaction. Calculate the mean rate of reaction and give the units.
$0.3 \mathrm{~kg}=300$ grams $300 \mathrm{~g} \div 50$ seconds

$$
=6 \mathrm{~g} / \mathrm{s}
$$

Q5. The table below shows information about a chemical reaction. Calculate the difference in the rate of reaction between the 0-20 seconds and 100-120 seconds.

Time in seconds	Volume of gas in $\mathbf{c m}^{2}$
0	0
20	24
40	44
60	59
80	70
100	76
120	79

Between 0-20:

$$
24 \mathrm{~cm}^{3} \div 20 \mathrm{secs}=1.2 \mathrm{~cm}^{3} / \mathrm{s}
$$

Between 100-120:
$3 \mathrm{~cm}^{3} \div 20$ secs $=0.15 \mathrm{~cm}^{3} / \mathrm{s}$
$1.2 \mathrm{~cm}^{3} / \mathrm{s}-0.15 \mathrm{~cm}^{3} / \mathrm{s}$
Difference $=1.05 \mathrm{~cm}^{3} / \mathrm{s}$

Interpret data from graphs to describe the progress of a reaction.

Graphs can also be used to calculate rates of reaction:

This is the

The rate of reaction $=$ gradient of the line $=\frac{\text { change in } y}{\text { change in } x}$

Challenge: At what time did the reaction stop?

180 seconds

Super challenge: Why did the rate of reaction get slower as the reaction progressed?

Particles of the reactants are eventually used up

1. Calculate the mean rate of the reaction over the first 50 seconds.

$$
\begin{aligned}
\text { rate } & =\text { gradient } \\
& =\frac{y}{x} \\
& =45 \mathrm{~cm}^{3} / 50 \mathrm{~s} \\
& =0.9 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

2. Calculate the mean rate of the reaction over the first 180 seconds.

$$
\begin{aligned}
\text { rate } & =\text { gradient } \\
& =\frac{\mathbf{y}}{\mathbf{x}} \\
& =135 \mathrm{~cm}^{3} / 180 \mathrm{~s} \\
& =0.75 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

You may be asked to calculate the rate of reaction on the curve of a graph:

1. Draw a tangent to the curve for the required time.
2. Construct a right angled triangle using the tangent.
3. Calculate the gradient of the tangent.

We are going to use the visualiser to calculate the rate of reaction at 30,90 and 120 seconds.

We will calculate the rate at 30 seconds together, then you will attempt the other two questions by yourselves...

Get out a pencil and ruler!

HT ONLY

Calculate the rate of reaction at:
a. 30 seconds
b. 90 seconds
c. 120 seconds

Interpret data from graphs to describe the progress of a reaction.

What is happening at each stage of this reaction?

Identify factors which can affect the rate of reaction.

1. The amount of energy that the particles have when they collide.
 2. How often the particles collide
 MORE FREQUENT SUCCESSFUL COLLISIONS = A FASTER RATE OF REACTION

Challenge: Explain why sugar dissolves more quickly in a hot cup of tea compared to a cold cup of tea.

There are $\mathbf{5}$ factors which affect the rates of chemical reactions:

- The temperature of a reaction
- The concentrations of reactants in solution
- The pressure of reacting gases
- The surface area of solid reactants
- The presence of a catalyst

You need to be able to describe and explain how each of these factors affects the rate of reaction.

Describe how these factors affect the number of collisionsin a reaction.

1. Temperature

COLD

Increasing the temperature gives particles more kinetic energy, so they move around faster.

This causes more frequent successful collisions which means a faster rate of reaction.

Describe how these factors affect the number of collisions in a reaction.

2. Concentration

Which solution is the most concentrated?
What does this mean in terms of particles?

CONCENTRATED =
more particles in a certain volume

DILUTE = fewer particles in a certain volume

Describe how these factors affect the number of collisions in a reaction.

2. Concentration

Increasing the concentration means there are more particles present that are closer together.
This causes more frequent successful collisions which means a faster rate of reaction.

DILUTE =
fewer particles in a certain volume

CONCENTRATED = more particles in a certain volume

Describe how these factors affect the number of collisions in a reaction.

3. Pressure (gases only)

Which picture shows the highest pressure? What does this mean in terms of particles?

LOW PRESSURE = fewer particles per unit volume

HIGH PRESSURE = more particles per unit volume

Describe how these factors affect the number of collisionsin a reaction.

3. Pressure (gases only)

Increasing the pressure means there are more particles in a smaller volume.

This causes more frequent successful collisions which means a faster rate of reaction.

LOW PRESSURE = fewer particles per unit volume

Describe how these factors affect the number of collisions in a reaction.

4. Surface area

If the solid is split into pieces, the surface area increases.

LOW SURFACE AREA

HIGH SURFACE AREA

Increasing the surface area means there are more surfaces exposed to the other reactants.
This causes more frequent successful collisions which means a faster rate of reaction.

Catalysts

With a catalyst, less
energy is needed for a

Key definition!

Catalysts speed up the rate of a reaction.
They provide an alternative reaction pathway with a lower activation energy.

They are not used up in a reaction.

Catalysts; quicker, not more!

In your exams, it is very important to say that the same amount of product is made, but it just takes less time to make that product.
e.g. A reaction between magnesium and hydrochloric acid makes $24 \mathrm{~cm}^{3}$ of hydrogen gas.

If a catalyst is added, $24 \mathrm{~cm}^{3}$ of hydrogen gas is still made, just quicker.

Explain the new activation energy pathway a catalyst takes.
As shown on a reaction profile (from unit 5!), the activation energy is lower when a catalyst is used = more collisions are successful!

Challenge - List some examples of catalysts.

REQUIRED PRACTICAL: Investigating the effect of

 concentration/temperature/surface area on the rate of a reaction.Timing how long it takes for cross to disappear

There are $\mathbf{2}$ methods that you will need to know for your exams:

. Measuring volumes of gases with time
stop watch

RP 1. Measuring volumes of gas over time

1. Connect the gas syringe to a bung using a delivery tube.
2. Measure $50 \mathrm{~cm}^{3}$ of 2.0 M acid with a measuring cylinder and add to a conical flask.
3. Add 3 cm of magnesium ribbon to the acid.
4. QUICKLY place bung into conical flask AND start the timer.
5. Measure and record the volume of gas produced every 10 s for 100 s .
6. Repeat 1-5 for different concentrations of acid.

5. Measure and record the
volume of gas produced
every 10 s for 100 s.

OR

Independent variable: Concentration of acid Dependent variable: Volume of gas produced Control variables: Volume of acid used, size of magnesium ribbon used

RP 2: Timing how long it takes for a cross to disappear

$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{SO}_{2}(\mathrm{~g})+\$(\mathrm{~s})$

Solid formed in a solution = A

When looking down into the beaker, the cross will become fainter over time:
\times

increasing time

The time taken for the cross to disappear can be used as the time of the reaction.

Why isn't this reaction very accurate?

1. Draw a black cross on a white piece of paper and place a conical flask on top of the cross.
2. Add $10 \mathrm{~cm}^{3}$ of the most dilute sodium thiosulfate solution into a conical flask
3. Measure $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid into the conical flask. At the same time, swirl the flask gently and start the timer immediately.
4. Stop timer when you can no longer see the cross. Record the time taken for the cross to disappear.
5. Repeat steps 1-4 with different concentrations of sodium thiosulfate solution.

Independent variable: Concentration of sodium thiosulfate Dependent variable: Time taken for cross to disappear Control variables: Volume of acid, concentration of acid

4.6.1.1 Calculating rates of reactions

Content

The rate of a chemical reaction can be found by measuring the quantity of a reactant used or the quantity of product formed over time:
mean rate of reaction $=\frac{\text { quantity of reactant used }}{\text { time taken }}$
mean rate of reaction $=\frac{\text { quantity of product formed }}{\text { time taken }}$
The quantity of reactant or product can be measured by the mass in grams or by a volume in cm^{3}.
The units of rate of reaction may be given as g / s or $\mathrm{cm}^{3} / \mathrm{s}$.
For the Higher Tier, students are also required to use quantity of reactants in terms of moles and units for rate of reaction in mol/s.

Students should be able to:

- calculate the mean rate of a reaction from given information about the quantity of a reactant used or the quantity of a product formed and the time taken
- draw, and interpret, graphs showing the quantity of product formed or quantity of reactant used up against time
- draw tangents to the curves on these graphs and use the slope of the tangent as a measure of the rate of reaction
- (HT only) calculate the gradient of a tangent to the curve on these graphs as a measure of rate of reaction at a specific time.

Red	Amber	Green

4.6.1.3 Collision theory and activation energy

Content

Collision theory explains how various factors affect rates of reactions. According to this theory, chemical reactions can occur only when reacting particles collide with each other and with sufficient energy. The minimum amount of energy that particles must have to react is called the activation energy.

Increasing the concentration of reactants in solution, the pressure of reacting gases, and the surface area of solid reactants increases the frequency of collisions and so increases the rate of reaction.
Increasing the temperature increases the frequency of collisions and makes the collisions more energetic, and so increases the rate of reaction.

Students should be able to :

- predict and explain using collision theory the effects of changing conditions of concentration, pressure and temperature on the rate of a reaction
- predict and explain the effects of changes in the size of pieces of a reacting solid in terms of surface area to volume ratio
- use simple ideas about proportionality when using collision theory to explain the effect of a factor on the rate of a reaction.

Red	Amber	Green

4.6.1.4 Catalysts

Content

Red	Amber	Green

4.6.1.2 Factors which affect the rates of chemical reactions

Content	Key opportunities for skills development
Factors which affect the rates of chemical reactions include: the concentrations of reactants in solution, the pressure of reacting gases, the surface area of solid reactants, the temperature and the presence of catalysts.	
Students should be able to recall how changing these factors affects the rate of chemical reactions.	This topic offers opportunities for practical work and investigations in addition to required practical 5.

Required practical 5: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced and a method involving a change in colour or turbidity.
This should be an investigation involving developing a hypothesis.

Red	Amber	Green

How would we write an equation to show that A and B react to form C and D ?

$$
A+B \longrightarrow C+D
$$

REACTANTS \longrightarrow PRODUCTS

The heating of hydrated copper sulphate is an example of a reversible reaction:

In a reversible reaction, one direction is exothermic, which releases energy. The reverse direction is endothermic, which absorbs energy. The size of the energy change is always the same in both directions.

```
25J taken in
    endothermic
hydrated copper sulfate(blue)
    exothermic
    anhydrous copper sulfate (white) + water
25J given out
```

The same amount of energy is absorbed as is taken out!

For example, if 25 J of energy is released in one direction, 25 J of energy will be taken in in the other direction.

In a reversible reaction, both products and reactants are made. The products can react together to form the original reactants:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} \\
& \text { REACTANTS } \\
& \text { PRODUCTS }
\end{aligned}
$$

One direction is endothermic, the other direction is exothermic. The size of the energy change is the same in both directions.

Word:
 Dynamic

Define it:

A system that constantly changes, moves or progresses.

Digging Deeper:

The word dynamic can also be used to describe a person that has a positive attitude and is full of energy and new ideas.

Deconstruct it (Root word):

From early $19^{\text {th }}$ century Greek word dunamis meaning power

Link it (similar words):

Moving, changing, energy

Write a sentence of your own that uses the word dynamic.

Write your own

 definition of the word dynamic.Which subjects or topics will this word be relevant to?

Word:

Equilibrium \square

Define it:

A system in which opposite forces or influences are balanced.

Digging Deeper:

Equilibrium can also refer to a state of physical balance e.g. I stumbled over a rock and recovered my equilibrium.

Deconstruct it (Root word):

From 17th century Latin words, aequi which means 'equal' and libra which means 'balance'.

Link it
 (similar words):

Balanced, even, opposite, stable

Use it:

The forward reaction and the backward reaction were in equilibrium.

Write a sentence of your own that uses the word dynamic.

Write your own

 definition of the word dynamic.Which subjects or topics will this word be relevant to?

DYNAMIC EQUILIBRIUM is when the rate of the forward reaction is the same as the rate of the backward reaction.

Dynamic equilibrium can only occur in a closed system, where there is no loss of products or reactants.

At dynamic equilibrium, there is no change in the concentration of reactants or products.

5.6.2.1 Reversible reactions

Content

Red	Amber	Green

Complete the practice paper questions!

Revision lesson link:
https://www.youtube.com/watch?v=UkrBJ6uGFA\&list=PL9louNCPbCxW8AN0tOpy7LaKdKSwfL3fP
https://www.youtube.com/watch?v=SPXanyy3hU\&list=PLidqqIGKox7WeOKVGHxcd69kKqtwrKI8W\&index=38
https://www.bbc.co.uk/bitesize/guides/z3nbqhv/revision/1

- Google ‘BBC Bitesize Rates of reaction'.

15 Minute ILT Task:

Will come up	Revision Questions
5.6.1.1 Calculating rates of	1. State the formula used to calculate rates of reaction.
reactions	2. In a reaction, $14.4 \mathrm{~cm}^{3}$ of oxygen gas was produced in the first 8 seconds. Calculate the mean rate of this reaction.
3. What does the units of rate depend on? State the general formula for units of rate.	
4. State three ways of measuring the formation of products during a reaction.	
5. Describe how precipitation can be used to calculate ratees of reaction.	
6. What are the advantages and disadvantages of using the formation of percipitates to calcuate rates of reaction?	
7. Describe how change in mass can be used to calculate rates of reaction.	
8. What are the advantages and disadvantages of using mass change to calcuate rates of reaction?	
9. Describe the volume of gas given off can be used to calculate rates of reaction.	
10. What are the advantages and disadvantages of using gas volume given off to calcuate rates of reaction?	
11. Draw typical graphs of the amount of product formed against time and the amount of reactants left against time.	
12. On a graph showing the amount of product or reactant against time, how is the rate of reaction shown?	
13. Why aren't graphs showing product against time or reactant against time straight lines? What does it look like	
insetad and why?	
14. Why do reactions start quickly and when do they stop?	
15. How can you compare the rate of a reaction performed under different conditions?	
16. How do you find the mean rate for a whole reaction from a graph?	
17. How do you find the mean rate of reaction between two points from a graph?	
18. What is a tangent and what are they used for?	
19. What is the formula for calculating rates from tangents?	

15 Minute ILT Task:

5.6.2.1 Reversible reactions	What is a reversible reaction? How is it represented? In a reversible reaction, what effect can changing the conditions of the reaction have? In a reversible reaction, when can and equilibrium be reached? What is equilibrium? What is meant by a 'closed system'? What does it mean if the equilibrium lies to the right? What does it mean if the equilibrium lies to the left? Describe the energy transfer in reversible reactions. Describe how the thermal decomposition of hydrated copper sulfate is a good example of a reversible reaction. Describe how the thermal decomposition of CaCO3 is a good example of a reversible reaction.
5.6.2.2 Energy changes and reversible	1. What is a reversible reaction? How is it represented? reactions
2. In a reversible reaction, what effect can changing the conditions of the reaction have?	
3. In a reversible reaction, when can and equilibrium be reached?	
4.2. What is equilibrium?	
5. What is meant by a closed system'?	
6. What does it mean if the equilibrium lies to the right?	

HT ONLY

Title - C6 Reversible reactions revision HT

Monday, 25 September 2023

Do it now:

Give two ways of measuring volume of gas.

Using a gas syringe or an upside down measuring cylinder in water.

Describe and explain the effect of increasing temperature on rate of reaction.

Increasing the temperature increases the rate of reaction as particles gain more kinetic energy, which leads to more frequent successful collisions.

How is gradient calculated from
a graph?
Gradient $=$ change in $y \div$ change in x

Explain why using magnesium powder gives a faster rate of reaction compared to magnesium ribbon.

Magnesium powder has a larger surface area than magnesium ribbon, so there are more surfaces exposed, so there are more frequent successful collisions.

Why does the reaction below appear to go cloudy?
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+$ $\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})$

Solid sulphur is produced as a precipitate

Describe and explain why catalysts are added to a reaction.

Catalysts increase the rate of a reaction by providing an alternative reaction pathway that has a lower activation energy. They do not get used up in a reaction.

C6 - The rate and extent of chemical change

How would we write an equation to show that A and B react to form C and D ?

$$
A+B \longrightarrow C+D
$$

REACTANTS \longrightarrow PRODUCTS

The heating of hydrated copper sulphate is an example of a reversible reaction:

In a reversible reaction, one direction is exothermic, which releases energy. The reverse direction is endothermic, which absorbs energy. The size of the energy change is always the same in both directions.

```
25J taken in
    endothermic
hydrated copper sulfate(blue)
    exothermic
    anhydrous copper sulfate (white) + water
25J given out
```

The same amount of energy is absorbed as is taken out!

For example, if 25 J of energy is released in one direction, 25 J of energy will be taken in in the other direction.

In a reversible reaction, both products and reactants are made. The products can react together to form the original reactants:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} \\
& \text { REACTANTS } \\
& \text { PRODUCTS }
\end{aligned}
$$

One direction is endothermic, the other direction is exothermic. The size of the energy change is the same in both directions.

Word:
 Dynamic

Define it:

A system that constantly changes, moves or progresses.

Digging Deeper:

The word dynamic can also be used to describe a person that has a positive attitude and is full of energy and new ideas.

Deconstruct it (Root word):

From early $19^{\text {th }}$ century Greek word dunamis meaning power

Link it (similar words):

Moving, changing, energy

Write a sentence of your own that uses the word dynamic.

Write your own

 definition of the word dynamic.Which subjects or topics will this word be relevant to?

Word:

Equilibrium \square

Define it:

A system in which opposite forces or influences are balanced.

Digging Deeper:

Equilibrium can also refer to a state of physical balance e.g. I stumbled over a rock and recovered my equilibrium.

Deconstruct it (Root word):

From 17th century Latin words, aequi which means 'equal' and libra which means 'balance'.

Link it
 (similar words):

Balanced, even, opposite, stable

Use it:

The forward reaction and the backward reaction were in equilibrium.

Write a sentence of your own that uses the word dynamic.

Write your own

 definition of the word dynamic.Which subjects or topics will this word be relevant to?

DYNAMIC EQUILIBRIUM is when the rate of the forward reaction is the same as the rate of the backward reaction.

Dynamic equilibrium can only occur in a closed system, where there is no loss of products or reactants.

At dynamic equilibrium, there is no change in the concentration of reactants or products.

Le Chatelier's Principle

If a system is at equilibrium and a change is made to any of the conditions, then the system responds to counteract the change.

The reaction conditions are chosen to favour the forward reaction to make a large amount of product as cheaply as possible.

The three conditions which could be changed and are:

- Concentration
- Temperature
- Pressure
e.g. The Haber Process
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
nitrogen hydrogen ammonia

Reaction conditions:

- $450^{\circ} \mathrm{C}$
- 200 atm (pressure)
- Iron catalyst

Change by ...	Equilibrium position shifts...
increasing temperature	in the \square from the surroundings, cooling them down)
decreasing temperature	in the \square the surroundings, heating them up)
increasing gas pressure	direction trans direction that forms \square this reduces pressure)
decreasing gas pressure	gas molecules (as in the direction that forms \square this increases pressure)
\square gas molecules (as	
concentration	in the direction that uses up the substance that has been added
\square	in the direction that forms more of the substance that has been removed
concentration	

Catalysts have NO EFFECT on the POSITION OF EQUILIBRIUM they only affect the RATE OF REACTION

Example 1:
TEMPERATURE INCREASE = EXOTHERMIC

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g}) \\
& \text { nitrogen hydrogen }
\end{aligned} \underset{\text { ammonia }}{3 \mathrm{H}_{2}(\mathrm{~g})} \rightleftharpoons \underset{\mathrm{NH}_{3}(\mathrm{~g})}{\rightleftharpoons}
$$

TEMPERATURE DECREASE = ENDOTHERMIC

Increasing temperature would shift the reaction to the LEFT (backwards reaction is endothermic), so the yield of ammonia would DECREASE.

Increasing pressure would shift the reaction to the RIGHT (fewer molecules on the right), so the yield of ammonia would INCREASE.

Increasing concentration of $\mathbf{N}_{\mathbf{2}}$ would shift the reaction to the RIGHT (to use up excess N_{2}), so the yield of ammonia would INCREASE.

$\mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$

Increasing temperature would shift the reaction to the LEFT (backwards reaction is endothermic) , so the yield of SO_{3} would DECREASE

Increasing pressure would shift the reaction to the
RIGHT (right hand side has fewer molecules) , so the yield of SO_{3} would INCREASE

Increasing concentration of SO_{3} would shift the reaction to the LEFT (to use up excess SO_{3}) , so the yield of SO_{3} would DECREASE

You Do It Alone

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}
$$

Decreasing temperature would shift the reaction to the LEFT (backwards reaction is exothermic) , so the yield of H_{2} would DECREASE

Decreasing pressure would shift the reaction to the RIGHT (right hand side has more molecules) , so the yield of H_{2} would INCREASE

Increasing concentration of CH_{4} would shift the reaction to the RIGHT (to use up excess CH_{4}) , so the yield of H_{2} would INCREASE

Example 4:

You Do lt Alone
$\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
\longrightarrow exothermic

Decreasing temperature would shift the reaction to the RIGHT (forwards reaction is exothermic), so the yield of $\mathrm{CH}_{3} \mathrm{OH}$ would INCREASE

Increasing pressure would shift the reaction to the
RIGHT (right hand side has fewer molecules) so the yield of $\mathrm{CH}_{3} \mathrm{OH}$ would INCREASE

Decreasing concentration of CO would shift the reaction to the LEFT (to make more CO , so the yield of H_{2} would DECREASE

Exam practice

In industry ethanol is produced by the reaction of ethene and steam at $300^{\circ} \mathrm{C}$ and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
$$

The forward reaction is exothermic.
Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.

Give a reason for your prediction.

Explain how increasing the pressure of the reactants will affect the amount of ethanol produced at equilibrium.

Exam practice

amount will decrease
because the equilibrium will move to the left
more ethanol will be produced
because system moves to least / fewer molecules

The reaction conditions are chosen to favour the forward reaction to make a large amount of product as cheaply as possible.

TEMPERATURE

PRESSURE

500 atmospheres

$20^{\circ} \mathrm{C}$
(normal temp)

$\mathbf{£ f}$ ExPensive $\mathbf{£ f}$

££ CHEAP ££

1 atmosphere (normal pressure)

Reversible reactions - a compromise...

Very high pressure and temperatures will also have a cost implication.

A compromise on temperature and pressure leads to reduced costs and a more economically viable product.
e.g. The Haber Process

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
nitrogen hydrogen ammonia

Reaction conditions:

- $450^{\circ} \mathrm{C}$
- 200 atm (pressure)
- Iron catalyst

Reversible reactions - a compromise...

e.g. The Haber Process
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
nitrogen hydrogen ammonia

In theory, for maximum yield you would use a LOW TEMPERATURE and a HIGH PRESSURE.

BUT

A low temperature would give a really slow rate of reaction, so a temp of $45 \mathbf{0}^{\circ} \mathrm{C}$ is used as a COMPROMISE.

A high pressure would be too expensive and could be dangerous, so a pressure of $\mathbf{2 0 0}$ atm is used as a COMPROMISE.

Ammonia is manufactured in the Haber Process, from nitrogen and hydrogen.
(a) Balance this symbol equation for the process.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \stackrel{\text { exothemic }}{\rightleftharpoons} 2 \mathrm{NH}_{3}
$$

At equilibrium, nitrogen, hydrogen and ammonia are present in the reactor.
(b) What is meant by 'equilibrium'?

Equilibrium is reached when the rate of the forwards reaction is equal to the rate of the backwards reaction (in a closed system).

Yield of NH_{3} decreases as temperature increases because the reaction will favour the backwards reaction as it in endothermic.

However, at a low temperature the rate of reaction will be too slow, so a higher temperature of $450^{\circ} \mathrm{C}$ is used as a compromise.

Iron powder is added as a catalyst to speed up the rate of reaction (it has no effect on the position of equilibrium.

5.6.2.1 Reversible reactions

Content

Red	Amber	Green

5.6.2.4 The effect of changing conditions on equilibrium (HT only)

Content

Red	Amber	Green

5.6.2.6 The effect of temperature changes on equilibrium (HT only)

Content

Red	Amber	Green

15 Minute ILT Task:

5.6.2.1 Reversible reactions	What is a reversible reaction? How is it represented? In a reversible reaction, what effect can changing the conditions of the reaction have? In a reversible reaction, when can and equilibrium be reached? What is equilibrium? What is meant by a 'closed system'? What does it mean if the equilibrium lies to the right? What does it mean if the equilibrium lies to the left? Describe the energy transfer in reversible reactions. Describe how the thermal decomposition of hydrated copper sulfate is a good example of a reversible reaction. Describe how the thermal decomposition of CaCO3 is a good example of a reversible reaction.
5.6.2.3 Equilibrium	1. What is a reversible reaction? How is it represented? 2. In a reversible reaction, what effect can changing the conditions of the reaction have? 3. In a reversible reaction, when can and equilibrium be reached?
4. What is equilibrium?	
5. What is meant by a 'closed system'?	
re. What does it mean if the equilibrium lies to the right?	
7. What does it mean if the equilibrium lies to the left?	
8. Describe the energy transfer in reversible reactions.	
9. Describe how the thermal decomposition of hydrated copper sulfate is a good example of a reversible reaction.	
10. Describe how the thermal decomposition of CaCO is a good example of a reversible reaction.	

15 Minute ILT Task:

5.6.2.4 The effect of changing conditions on equilibrium (HT only)

1. What is Le Chatelie'rs principle?
2. Accoridg to Le Chatelie'rs principle, what three things can alter the yield of a reversible reaction?
3. Describe the effect of increasing/decreasing the temperature of a reversible reaction.
4. Describe the effect of increasing/decreasing the temperature of a the following reaction:

Exothermic \rightarrow

$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$

\leftarrow Endothermic

Which type of reversible reactions does pressure affect?
Describe the effect of increasing/decreasing the pressure of a reversible reaction.
Describe the effect of increasing/decreasing the pressure of a the following reaction:

$\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$

Describe the effect of increasing/decreasing the concentration of a reversible reaction. Describe the effect of increasing/decreasing the concentration of a the following reaction:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

